KSII Transactions on Internet and Information Systems (TIIS)
/
제6권11호
/
pp.2866-2879
/
2012
Among the various security threats in online games, the use of game bots is the most serious problem. Previous studies on game bot detection have proposed many methods to find out discriminable behaviors of bots from humans based on the fact that a bot's playing pattern is different from that of a human. In this paper, we look at the chatting data that reflects gamers' communication patterns and propose a communication pattern analysis framework for online game bot detection. In massive multi-user online role playing games (MMORPGs), game bots use chatting message in a different way from normal users. We derive four features; a network feature, a descriptive feature, a diversity feature and a text feature. To measure the diversity of communication patterns, we propose lightly summarized indices, which are computationally inexpensive and intuitive. For text features, we derive lexical, syntactic and semantic features from chatting contents using text mining techniques. To build the learning model for game bot detection, we test and compare three classification models: the random forest, logistic regression and lazy learning. We apply the proposed framework to AION operated by NCsoft, a leading online game company in Korea. As a result of our experiments, we found that the random forest outperforms the logistic regression and lazy learning. The model that employs the entire feature sets gives the highest performance with a precision value of 0.893 and a recall value of 0.965.
온라인 게임의 다양한 보안 위협 가운데, 온라인 게임 봇의 사용이 게임 서비스에 가장 심각한 문제를 야기하고 있다. 본 논문에서는 온라인 게임 봇 탐지를 위한 소셜 액티비티 분석 프레임워크를 제안한다. 이 프레임워크를 이용하여 게이머의 소셜 액티비티를 가장 많이 포함하고 있는 파티 플레이(party play) 로그를 분석하는 데에 적용하였다. 게임 봇은 일반 사용자들과 다르게, 사이버 자산을 빠르게 얻는데 특화되어 있기 때문에 소셜 액티비티를 분석할 경우 정상적인 사용자들과 행동 패턴에 차이가 있다. 이 특징을 이용하여 게임 봇 이용자와 일반 이용자들을 구분해 낼 수있도록, 사용자 행위를 분석하고 온라인 게임 봇 탐지를 위한 임계값을 정의하였다. 탐지 규칙을 포함하는 지식 기반 시스템을 구축한 뒤 이를 국내 최대, 세계 6위 규모의 게임에 적용하였다. 본 논문의 프레임워크를 활용하여 분류를 한 결과 95.92%의 높은 정확도를 보였다.
온라인 게임 산업이 급격히 성장함에 따라 경제적 이득을 목적으로 한 악성 행위가 증가되고 있다. 본 논문에서는 온라인 게임 내 악성 행위 중 높은 비중을 차지하는 게임 봇 탐지를 위한 모티베이션 기반 ERG 이론을 적용한 탐지 방법을 제안한다. 기존에 연구된 행위 기반 탐지 기법들이 특정 행위들을 특성치로 선정하여 분석하였다면, 본 논문에서는 모티베이션 이론을 적용하여 행위 분석을 수행하였다. 실제 MMORPG의 데이터를 분석하여 본 결과, 온라인 게임 내에서도 정상 사용자는 실제 세계와 마찬가지로 모티베이션과 관련된 ERG 이론이 잘 적용되는 것을 확인하였다. 반면에, 게임 봇은 정상 사용자와 다르게 특정 목적을 위한 행동 패턴이 나타나기 때문에 모티베이션 이론을 적용하여 탐지할 경우 정상 사용자와는 다른 행동 패턴을 보이는 것을 발견하였다. 이를 통해 ERG 이론을 적용한 봇 탐지 방법을 국내 7위의 규모의 게임에 적용하여 봇 제재 리스트와 교차 분석한 결과, 99.74% 의 정확도로 정상 사용자와 봇을 분류할 수 있었다.
불법 프로그램을 이용한 게임 내 봇은 개인에서 조직으로 확장되고 있으며, 불량조직인 작업장을 통해 온라인 게임 산업에 심각한 문제를 야기하고 있다. 게임 봇을 효율적으로 관리하고 많은 게임머니를 취득하기 위해, 게임 봇들을 온라인 게임 내 소셜 커뮤니티인 길드로 구성하여 봇 길드 활동을 하는 작업장이 존재한다. 게임 사업자들은 게임 봇 탐지 알고리즘을 이용해 봇을 탐지하고 있지만, 이러한 탐지 알고리즘은 작업장의 일부만 탐지가 가능하다. 본 논문에서는 일반 길드와 봇 길드의 특징을 추출하여 분석하고, 봇 길드로 활동하는 작업장을 탐지 할 수 있는 방법을 제안한다. 봇 길드와 일반 길드를 구분하기 위해 개인거래와 경매장 거래, 채팅 패턴을 분석하고, 분석한 결과를 중심으로 봇 길드를 탐지할 수 있었다. 본 논문에서 제시한 기법을 국내 유명 온라인 게임의 실제 데이터 샘플에 적용한 결과, 효율적으로 봇 길드를 탐지해 낼 수 있음을 확인 할 수 있었다.
온라인 게임 봇은 이미 수 많은 방식을 통해 사람들에게 알려져 왔으며, 사용자의 게임 흥미 저하, 게임 내 경제 순환 파괴, 게임 컨텐츠 및 수명 단축 등 많은 문제점을 야기한다. 정상적이지 않은 게임 봇 운영을 방치하는 것은 장기적으로 게임 제작사와 게임 플레이어에게 모두 악영향을 미치게 되므로 이에 대한 탐지 및 제재는 필수가 되었다. 하지만 제재 단계에서 생기는 오인 제재의 딜레마를 피하기 쉽지 않다. 게임사 측에서 유저를 제재하기 위해서는 객관적인 분석 지표인 로그를 가지고 제재 여부를 판단해야 하며, 로그에서 추출한 정보를 근거로 확보해야 한다. 본 연구에서는 탐지 대상 기간의 로그에 대하여 이를 일일 단위로 나누어서 게임봇 유저 판별을 수행할 것이다. 일일 단위 탐지를 위해 탐지 기간을 하루 단위로 나누어 해당 일자에 대한 게임봇 여부를 우선 판별하고, 이후 최종 결과를 판단하였다. 제안한 방법론을 통해 일반 유저 스타일과 게임봇 유저 스타일이 섞여 있는 경우를 쉽게 탐지해 낼 수 있을 것이다. 본 논문에서 제안한 방법론으로 테스트한 결과, 분류 정확도를 확인할 수 있는 지표 중 하나인 F1-score가 0.898에서 0.945로 향상되었다.
다중 접속 역할 게임(Massively Multi-Online Role Playing Game, MMORPG)에서 게임봇은 게임 밸런스에 악영향을 끼치고 일반 유저들에게 상대적인 박탈감을 느끼게 하여 게임 수명을 단축시키는 위험 요소이다. 따라서 그 동안 게임 봇을 탐지하기 위한 다양한 방법이 연구되었으나 특정 게임 컨텐츠의 특징에 초점을 맞춤에 따라 신규 게임이 출시될 때마다 탐지 기법 개발이 필요하거나 혹은 게임 및 봇 프로그램 업데이트에 따른 유지 보수 방안을 고려하지 않고 있다. 본 논문에서는 게임봇이 본질적으로 갖고 있는 특징인, 설정된 패턴에 따라 행동을 반복하는 자기유사성을 주요 특질로 이용한 기계 학습 기법을 제안하고 이렇게 학습한 모델을 자동으로 유지 보수하는 시스템을 제안하였다. 이렇게 제안한 방법은 엔씨소프트의 대표 MMORPG인 리니지, 아이온, 블레이드 앤 소울에 대해 성능을 테스트하였으며 시스템을 구현하여 실전에 적용하였다.
Game bots are illegal programs that facilitate account growth and goods acquisition through continuous and automatic play. Early detection is required to minimize the damage caused by evolving game bots. In this study, we propose a game bot detection method based on action time intervals (ATIs). We observe the actions of the bots in a game and identify the most frequently occurring actions. We extract the frequency, ATI average, and ATI standard deviation for each identified action, which is to used as machine learning features. Furthermore, we measure the performance using actual logs of the Aion game to verify the validity of the proposed method. The accuracy and precision of the proposed method are 97% and 100%, respectively. Results show that the game bots can be detected early because the proposed method performs well using only data from a single day, which shows similar performance with those proposed in a previous study using the same dataset. The detection performance of the model is maintained even after 2 months of training without any revision process.
온라인 게임 시장이 성장하면서 게임 봇의 사용은 게임 서비스에 가장 심각한 문제를 야기하고 있다. 본 논문에 서는 MMORPG 장르의 게임 봇 중 채집을 진행하는 봇을 탐지하기 위한 채집 좌표 분석 모델을 제안한다. 제안한 모델은 좌표 데이터를 기반으로 플레이어의 채집 행위를 분석 한다. 정상적인 플레이어보다 손쉽게 게임 내 재화와 아이템을 수급할 수 있는 게임 봇은 수면 시간, 캐릭터 조작 피로도와 같은 현실적인 제약의 영향을 받지 않기 때문에 채집 행위를 시도하는 좌표 구역에 차이가 발생한다. 좌표 구역을 나누고 각 플레이어의 좌표 구역 차이를 이용하여 게임 봇 플레이어와 정상적인 플레이어를 구분해 낼 수 있도록 했다. NCSoft 사의 AION 로그로 데이터셋을 만들고 random forest 모델에 적용하여 게임 봇을 탐지한 결과 재현율 72%, 정밀도 92%의 성능을 보였다.
2004년 이후 정보기술의 성장과 더불어 게임 서비스에 대한 피해 사례가 해 마다 빠르게 증가하고 있는 실정이다. 특히 게임 봇(자동사냥 프로그램)에 대한 피해규모가 가장 크게 조사되고 있으며 이를 방지하기 위한 연구도 활발히 진행되고 있다. 게임 봇은 사용자가 입력하는 키보드나 마우스의 움직임을 대신해 자동으로 게임을 수행하는 프로그램으로 어떠한 사용자의 조작 없이도 게임 속에서의 이득 활동을 무한정 행할 수 있다. 이와 같은 행동은 일반적인 사용자에게 상대적인 불쾌감을 줄 뿐만 아니라 게임의 수명을 단축시키는 등 게임 회사 및 사용자에게 큰 피해를 발생시키고 있어 이를 방지하기 위한 방법이 주목 되고 있다. 기존의 게임 봇 검출 연구들은 단순이 사용자 개인 PC에 설치되어 동작중인 프로그램을 감시하기 때문에 게임 봇 사용자의 조작에 의해 쉽게 피해갈수 있는 단점을 가지고 있다. 따라서 본 논문에서는 게임 서버측면에서 사람과 게임 봇의 행동을 비교하여 게임 봇 사용자들이 조작이나 회피가 힘든 게임 봇 검출 방법을 제안한다. 제안 방법으로는 게임 봇과 사람의 행동 패턴 차이 모델을 정의하고 나이브 베이지안 분류기를 사용하여 게임 봇을 검출한다.
An approach for game bot detection in massively multiplayer online role-playing games (MMORPGs) based on the analysis of game playing behavior is proposed. Since MMORPGs are large-scale games, users can play in various ways. This variety in playing behavior makes it hard to detect game bots based on play behaviors. To cope with this problem, the proposed approach observes game playing behaviors of users and groups them by their behavioral similarities. Then, it develops a local bot detection model for each player group. Since the locally optimized models can more accurately detect game bots within each player group, the combination of those models brings about overall improvement. Behavioral features are selected and developed to accurately detect game bots with the low resolution data, considering common aspects of MMORPG playing. Through the experiment with the real data from a game currently in service, it is shown that the proposed local model approach yields more accurate results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.