• Title/Summary/Keyword: One-time Random number

Search Result 134, Processing Time 0.028 seconds

An RFID Mutual Authentication Protocol Using One-Time Random Number (일회성 난수를 사용한 RFID 상호인증 프로토콜)

  • Oh, Se-Jin;Chung, Kyung-Ho;Yun, Tae-Jin;Abn, Kwang-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.858-867
    • /
    • 2011
  • The RFID(Radio-Frequency IDentification) systems have many security problem such as eavesdropping, a replay attack, location tracking and DoS(Denial of Service) attacks. Because RFID systems use radio-frequency. So research are being made to solve the problem of RFID systems, one of which is AES algorithm. This paper presents an authentication protocol using AES and one-time random number to secure other attacks like eavesdropping, a replay attack, location tracking, In addtion, RSMAP uses OTP(One-Time Pad) in order to safely transmit.

Optimum Replacement Intervals Considering Salvage Values In Random Time Horizon (확률 시평에서 잔존가치를 고려한 최적의 교체 주기)

  • Park, Chung-Hyeon;Lee, Dong-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.170-176
    • /
    • 2001
  • An optimization problem to obtain the optimal replacement interval considering the salvage values is studied. The system is minimally repaired at failure and is replaced by new one at age T(periodic replacement policy with minimal repair of Barlow and Hunter〔2〕). Our model assumes that the time horizon associated with the number of replacements is random The total expected cost considering the salvage values with random time horizon is obtained and the optimal replacement interval minimizing the cost is found by numerical methods. Comparisons between non-considered salvage values and this case are made by a numerical example.

  • PDF

Reduction in Sample Size for Efficient Monte Carlo Localization (효율적인 몬테카를로 위치추정을 위한 샘플 수의 감소)

  • Yang Ju-Ho;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.450-456
    • /
    • 2006
  • Monte Carlo localization is known to be one of the most reliable methods for pose estimation of a mobile robot. Although MCL is capable of estimating the robot pose even for a completely unknown initial pose in the known environment, it takes considerable time to give an initial pose estimate because the number of random samples is usually very large especially for a large-scale environment. For practical implementation of MCL, therefore, a reduction in sample size is desirable. This paper presents a novel approach to reducing the number of samples used in the particle filter for efficient implementation of MCL. To this end, the topological information generated through the thinning technique, which is commonly used in image processing, is employed. The global topological map is first created from the given grid map for the environment. The robot then scans the local environment using a laser rangefinder and generates a local topological map. The robot then navigates only on this local topological edge, which is likely to be similar to the one obtained off-line from the given grid map. Random samples are drawn near the topological edge instead of being taken with uniform distribution all over the environment, since the robot traverses along the edge. Experimental results using the proposed method show that the number of samples can be reduced considerably, and the time required for robot pose estimation can also be substantially decreased without adverse effects on the performance of MCL.

Traffic Modeling and Analysis for Pedestrians in Picocell Systems Using Random Walk Model (Picocell 시스템의 보행자 통화량 모델링 및 분석)

  • Lee, Ki-Dong;Chang, Kun-Nyeong;Kim, Sehun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.135-144
    • /
    • 2003
  • Traffic performance in a microcellular system is much more affected by cell dwell time and channel holding time in each cell. Cell dwell time of a call is characterized by its mobility pattern, i.e., stochastic changes of moving speed and direction. Cell dwell time provides important information for other analyses on traffic performance such as channel holding time, handover rate, and the average number of handovers per call. In the next generation mobile communication system, the cell size is expected to be much smaller than that of current one to accommodate the increase of user demand and to achieve high bandwidth utilization. As the cell size gets small, traffic performance is much more affected by variable mobility of users, especially by that of pedestrians. In previous work, analytical models are based on simple probability models. They provide sufficient accuracy in a simple second-generation cellular system. However, the role of them is becoming invalid in a picocellular environment where there are rapid change of network traffic conditions and highly random mobility of pedestrians. Unlike in previous work, we propose an improved probability model evolved from so-called Random walk model in order to mathematically formulate variable mobility of pedestrians and analyze the traffic performance. With our model, we can figure out variable characteristics of pedestrian mobility with stochastic correlation. The above-mentioned traffic performance measures are analyzed using our model.

The Sub-Peres Functions for Random Number Generation (무작위수생성을 위한 부 페레즈 함수)

  • Pae, Sung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.19-30
    • /
    • 2013
  • We study sub-Peres functions that are defined recursively as Peres function for random number generation. Instead of using two parameter functions as in Peres function, the sub-Peres functions uses only one parameter function. Naturally, these functions produce less random bits, hence are not asymptotically optimal. However, the sub-Peres functions runs in linear time, i.e., in O(n) time rather than O(n logn) as in Peres's case. Moreover, the implementation is even simpler than Peres function not only because they use only one parameter function but because they are tail recursive, hence run in a simple iterative manner rather than by a recursion, eliminating the usage of stack and thus further reducing the memory requirement of Peres's method. And yet, the output rate of the sub-Peres function is more than twice as much as that of von Neumann's method which is widely known linear-time method. So, these methods can be used, instead of von Neumann's method, in an environment with limited computational resources like mobile devices. We report the analyses of the sub-Peres functions regarding their running time and the exact output rates in comparison with Peres function and other known methods for random number generation. Also, we discuss how these sub-Peres function can be implemented.

ON THE REPRESENTATION OF PROBABILITY VECTOR WITH SPECIAL DIFFUSION OPERATOR USING THE MUTATION AND GENE CONVERSION RATE

  • Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • We will deal with an n locus model in which mutation and gene conversion are taken into consideration. Also random partitions of the number n determined by chromosomes with n loci should be investigated. The diffusion process describes the time evolution of distributions of the random partitions. In this paper, we find the probability of distribution of the diffusion process with special diffusion operator $L_1$ and we show that the average probability of genes at different loci on one chromosome can be described by the rate of gene frequency of mutation and gene conversion.

Multi User-Authentication System using One Time-Pseudo Random Number and Personal DNA STR Information in RFID Smart Card (RFID 스마트카드내 DNA STR Information과 일회용 의사난수를 사용한 다중 사용자 인증시스템)

  • Sung, Soon-Hwa;Kong, Eun-Bae
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.747-754
    • /
    • 2003
  • Thia paper suggests a milti user-authentication system comprises that DNA biometric informatiom, owner's RFID(Radio Frequency Identification) smartcard of hardware token, and PKI digital signqture of software. This system improved items proposed in [1] as follows : this mechanism provides one RFID smartcard instead of two user-authentication smartcard(the biometric registered seal card and the DNA personal ID card), and solbers user information exposure as RFID of low proce when the card is lost. In addition, this can be perfect multi user-autentication system to enable identification even in cases such as identical twins, the DNA collected from the blood of patient who has undergone a medical procedure involving blood replacement and the DNA of the blood donor, mutation in the DNA base of cancer cells and other cells. Therefore, the proposed system is applied to terminal log-on with RFID smart card that stores accurate digital DNA biometric information instead of present biometric user-authentication system with the card is lost, which doesn't expose any personal DNA information. The security of PKI digital signature private key can be improved because secure pseudo random number generator can generate infinite one-time pseudo randon number corresponding to a user ID to keep private key of PKI digital signature securely whenever authenticated users access a system. Un addition, this user-authentication system can be used in credit card, resident card, passport, etc. acceletating the use of biometric RFID smart' card. The security of proposed system is shown by statistical anaysis.

Reduction in Sample Size Using Topological Information for Monte Carlo Localization

  • Yang, Ju-Ho;Song, Jae-Bok;Chung, Woo-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.901-905
    • /
    • 2005
  • Monte Carlo localization is known to be one of the most reliable methods for pose estimation of a mobile robot. Much research has been done to improve performance of MCL so far. Although MCL is capable of estimating the robot pose even for a completely unknown initial pose in the known environment, it takes considerable time to give an initial estimate because the number of random samples is usually very large especially for a large-scale environment. For practical implementation of the MCL, therefore, a reduction in sample size is desirable. This paper presents a novel approach to reducing the number of samples used in the particle filter for efficient implementation of MCL. To this end, the topological information generated off- line using a thinning method, which is commonly used in image processing, is employed. The topological map is first created from the given grid map for the environment. The robot scans the local environment using a laser rangefinder and generates a local topological map. The robot then navigates only on this local topological edge, which is likely to be the same as the one obtained off- line from the given grid map. Random samples are drawn near the off-line topological edge instead of being taken with uniform distribution, since the robot traverses along the edge. In this way, the sample size required for MCL can be drastically reduced, thus leading to reduced initial operation time. Experimental results using the proposed method show that the number of samples can be reduced considerably, and the time required for robot pose estimation can also be substantially decreased.

  • PDF

Simulation Optimization for Optimal at Design of Stochastic Manufacturing System Using Genetic Algorithm (추계적 생산시스템의 최적 설계를 위한 전자 알고리즘을 애용한 시뮬레이션 최적화 기법 개발)

  • 이영해;유지용;정찬석
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.1
    • /
    • pp.93-108
    • /
    • 2000
  • The stochastic manufacturing system has one or more random variables as inputs that lead to random outputs. Since the outputs are random, they can be considered only as estimates of the true characteristics of the system. These estimates could greatly differ from the corresponding real characteristics for the system. Multiple replications are necessary to get reliable information on the system and output data should be analyzed to get optimal solution. It requires too much computation time practically, In this paper a GA method, named Stochastic Genetic Algorithm(SGA) is proposed and tested to find the optimal solution fast and efficiently by reducing the number of replications.

  • PDF

Abstracted Partitioned-Layer Index: A Top-k Query Processing Method Reducing the Number of Random Accesses of the Partitioned-Layer Index (요약된 Partitioned-Layer Index: Partitioned-Layer Index의 임의 접근 횟수를 줄이는 Top-k 질의 처리 방법)

  • Heo, Jun-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1299-1313
    • /
    • 2010
  • Top-k queries return k objects that users most want in the database. The Partitioned-Layer Index (simply, the PL -index) is a representative method for processing the top-k queries efficiently. The PL-index partitions the database into a number of smaller databases, and then, for each partitioned database, constructs a list of sublayers over the partitioned database. Here, the $i^{th}$ sublayer in the partitioned database has the objects that can be the top-i object in the partitioned one. To retrieve top k results, the PL-index merges the sublayer lists depending on the user's query. The PL-index has the advantage of reading a very small number of objects from the database when processing the queries. However, since many random accesses occur in merging the sublayer lists, query performance of the PL-index is not good in environments like disk-based databases. In this paper, we propose the Abstracted Partitioned-Layer Index (simply, the APL-index) that significantly improves the query performance of the PL-index in disk-based environments by reducing the number of random accesses. First, by abstracting each sublayer of the PL -index into a virtual (point) object, we transform the lists of sublayers into those of virtual objects (ie., the APL-index). Then, we virtually process the given query by using the APL-index and, accordingly, predict sublayers that are to be read when actually processing the query. Next, we read the sublayers predicted from each sublayer list at a time. Accordingly, we reduce the number of random accesses that occur in the PL-index. Experimental results using synthetic and real data sets show that our APL-index proposed can significantly reduce the number of random accesses occurring in the PL-index.