• Title/Summary/Keyword: One-dimensional Unsteady Gas Flow

Search Result 11, Processing Time 0.022 seconds

Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine (6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

A Study on the Prediction of Pressure ~ Time Histories by Unsteady Gas Flow through the Internal Combustion Engine Exhaust System (내연기관 배기계의 비정상 가스유동에 대한 압력-시간 파형 예측에 관한 연구)

  • M.H.Lee;J.S.Lee;B.G.Yu;K.O.Cha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.491-502
    • /
    • 1997
  • This paper describes a theoretical and exprimental investigation of the pressure - time histories of some basic internal combustion engine exhaust systems. The program package is utilized the method of characteristics to solve the general equations of one - dimensional unsteady gas flow. This analysis is then combined with boundary models, based on quasi - steady flow approach, to give a complete treatment of the flow behavior in the exhaust system. Using a rotary valve exhaust simulator, experimental pressure - time histories were obtained. The predictions are com¬pared with measured results and show a high degree of correlation in amplitude and phasing.

  • PDF

A Study on the Gas Wave Propagation in the Pipe by Numerical analysis (수치해석에 의한 파이프에서의 가스파동전하에 관한 연구)

  • 김명균
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.154-160
    • /
    • 1998
  • This study describes a theoretical and experimental investigation of gas wave propagation in the pipe system. Most calculations of compressible flows in the pipe have been based on the method of characteristics. This technique has propensity to truncate waves and is difficult to apply to non-perfect gas. A method that describes the application of a two-step Lax-Wendroff acheme to solution of the unsteady one-dimentional flow in the pipe was developed. Theoretical calculations using both the method of characteristics and the two-step Lax-Wendroff method are presented including a realistic model for heat transfer and friction processes. In the present work, account is taken of the nonlinear behavior. For sections of parallel pipe, an one dimensional unsteady homentropic analysis is employed, and a numerical solution is obtained with the aid of a digital computer, using the method of characteristics and two-step Lax-Wendroff method. This analysis is then combined with boundary models, based on a quasi-steady flow approach, to give a complete treatment of the flow behavior in the pipe system.

  • PDF

Performance Analysis of the Pintle Thruster Using 1-D Simulation-II : Unsteady State Characteristics (1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석-II : 비정상상태 특성)

  • Noh, Seonghyeon;Kim, Jihong;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.311-317
    • /
    • 2015
  • This paper describes how to apply one-dimensional simulation to predict unsteady state characteristics of the cold-gas pintle thruster. Mass flow rate, chamber pressure, and nozzle exit pressure are key parameters for thrust control. Chamber pressure rose and fell monotonously with the pintle stroke variation, while thrust variation was different from chamber pressure variation. During the forward pintle stroke operation, the thrust value tended to decrease initially and returned to increase when pintle speed and chamber free volume exceed some specified value. Even though one-dimensional simulation has the limitations to predict unsteady state characteristics, it is still useful for initial performance assessment of various thrusters which adopt an altitude compensation nozzle such as a dual-bell nozzle, prior to experiment or numerical analysis.

An Analysis of Flow Phenomena in Shock Tube System Design(I)-Comparison of Experimental and Computation Result- (충격파관 장치설계를 위한 유동현상의 해석(1)-계산치와 실험치의 비교-)

  • 정진도;수곡행부
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1218-1226
    • /
    • 1994
  • The shock tube is a useful device for investigating shock phenomena, spray combustion, unsteady gas dynamics, etc. Therefore, it is necessary to analyze exactly the flow phenomena in shock tube. In this study, the mechanics of its reflected shock zone has been investigated by using of the one-dimensional gas dynamic theory in order to estimate the transition from initial reflection of shock wave region. Calulation for four kinds of reflected shock tube temperature (i.e. (a) 1388 K (b) 1276 K (c) 1168 K (d) 1073 K) corresponding to the experimental conditions have been carried out sumarized as follows. (1) The qualitative tendency is almost the same as in that conditions in region of reflected wave region. (2) High temperature period (reflected shock wave temperature) $T_{5}$, exists 0-2.65 ms. (3) Transition period from temperature of reflection shock wave is far longer than the calculated one. This principally attributed to the fact that the contact surface is accelerated, also, due to the release of energy by viscoity effect. This apparatus can advance the ignition process of a spray in a ideal condition that involved neither atomization nor turbulent mixing process, where, using a shock tube, a column of droplets freely from atomizer was ignited behind a reflected shock.

Analysis of Transient Characteristics of a Steam Power Plant System (증기발전 시스템의 과도상태 특성 해석)

  • Park, Keun-Han;Kim, Tong-Seop;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.967-975
    • /
    • 2000
  • Transient characteristics of a boiler and turbine system for a steam power plant are simulated. One-dimensional unsteady models are introduced for each component. An interaction between boiler and turbine and a control of the water level in the drum are taken into account. Transient responses of the system to the variations of main system variables such as fuel and air flow rate, cooling water injection rate at the attemperator, gas recirculation rate at the furnace and opening of the turbine control valve are examined. Effect of fluid inertia and tube wall thermal inertia on predicted dynamic behavior is investigated.

Derivation of Design Parameter for Heat Regenerator with Spherical Particles (구형축열체를 이용한 축열기의 설계인자도출)

  • Cho, Han-Chang;Cho, Kil-Won;Lee, Yong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1412-1419
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, was numerically analyzed to evaluate the heat transfer and pressure losses and to derive the design parameter for heat regenerator. It is confirmed that the computational results, such as air preheat temperature, exhausted gases outlet temperature, and pressure losses, agreed well with the experimental data. The thermal flow in heat regenerator varies with porosity, configuration of regenerator and diameter of regenerative particle. As the gas velocity increases with decreasing the cross-sectional area of the regenerator, the heat transfer between gas and particle enhances and pressure losses decrease. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled lower with the increase of pressure losses. Assuming a given exhaust gases temperature at the regenerator outlet, the regenerator need to be linearly lengthened with inlet Reynolds number of exhaust gases, which is defined as a regenerator design parameter.

Pressure Variations in Intake and Exhaust Manifold of a Single Cylinder Engine (단기통 엔진의 흡.배기계의 압력 변동에 관한 연구)

  • Choi, Seuk-Cheun;Lee, Young-Hun;Lee, Sang-Chul;Chung, Han-Shik;Lee, Kwang-Young;Jeong, Hyo-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.775-780
    • /
    • 2003
  • In this study, a computer analysis has been developed for predicting the pipe pressure of the intake and exhaust manifold in a single cylinder engine. To get the boundary conditions for a numerical analysis, one dimensional and unsteady gas dynamic calculation is performed by using the MOC(Method Of Characteristic). The main numerical parameters are the variation of the exhaust pipe diameters to calculate the pulsating flow when the intake and exhaust valves are working. As the results of numerical analysis, the shapes and distributions of the exhaust pipe pressures were influenced strongly on the cylinder pressure. As the exhaust pipe diameter is decreased, the amplitude of exhaust pressure is large and the cylinder pressure was showed low in the region of intake valve opening time.

  • PDF

The pulsating pressure in the intake and exhaust manifold of a single cylinder engine by the various of engine revolutions

  • Chung, Han-Shik;Choi, Seuk-Cheun;Jong, Hyo-Min;Lee, Chi-Woo;Kim, Chi-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.75-82
    • /
    • 2004
  • In this research, a computer analysis has been developed for predicting the Pipe pressure of the intake and exhaust manifold in a small single cylinder engine. To get the boundary conditions for a numerical analysis one dimensional and unsteady gas dynamic calculation is performed by using the MOC(Method Of Characteristics). The main numerical parameters are engine revolutions. to calculate the Pulsating flow which the intake and exhaust valves are working. The distributions of the exhaust pipe pressures were influenced strongly to the cylinder pressures and the shapes of exhaust pressure variation were similar to the Inside of cylinder pressure As the engine revolutions are increased. the intake pressure was lower than ambient pressure. The amplitude of exhaust pressure had increased and the phase of cylinder pressure $P_c$ is delayed and the amplitude of cylinder pressure were increased.

Performance Prediction of Heat Regenerators with using Spheres: Relation between Heat Transfer and Pressure Drop (구형 축열체를 사용한 축열기의 성능예측: 압력손실과 열전달의 관계)

  • 조한창;조길원;이용국
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of heat of exhaust gaset. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of heat regenerator with spherical particles, was numerically simulated to evaluate the heat transfer and pressure drop and thereby to suggest the parameter for designing heat regenerator. It takes about 7 hours for the steady state of the flow field in regenerator, in which heat absorption of regenerative particle is concurrent with the same magnitude of heat desorption. The regenerative particle experiences small temperature fluctuation below 10 K during the reversing process. The performance of thermal flow in heat regenerator varies with inlet velocity of exhaust gas and air, configuration of regenerator (cross-sectional area and length) and diameter of regenerative particle. As the gas velocity increases, the heat transfer between gas and particle enhances and with the increase the pressure losses. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled more with the increase of pressure losses.