• 제목/요약/키워드: One-Equation Model

검색결과 1,481건 처리시간 0.025초

Analysis of PMIS Users Satisfaction and Loyalty Using Structural Equation Model

  • Kim, Min-Cheol;Lee, Hyung-Il;Cho, Sang-Ho;Kim, Ju-Hyung
    • Architectural research
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Project management information systems (PMIS) have been implemented to support cooperation among the participants of construction projects. Unlike other information systems used by members from an organization with similar culture and business environment, the PMIS are members from one-off fragmented project organization with diverse professional background. Successful operation is significantly affected by the tendencies of client's side and individual awareness of participants. In this regard, it is imperative to evaluate the success of the system based on the individual characteristics of PMIS users. Thus, this study proposes a method for determining the system success by analyzing the extent of the effects of system factors such as System Quality, Information Quality, and Service Quality and individual factors such as a user's IT application ability, Extrinsic Motivation to achieve User Satisfaction, and loyalty. Accordingly, a structural equation model (SEM), an effective tool to examine of the comprehensive structure of a causal relationship, is applied for analysis because the internal awareness of individuals is established as a variable.

보리의 상온 통풍건조 시뮬레이션(I) -실험치와 예측치의 비교- (Simulation of Natural Air Drying of Barley -Comparison of Experimental and Simulated Results-)

  • 금동혁;이선덕
    • Journal of Biosystems Engineering
    • /
    • 제15권1호
    • /
    • pp.44-51
    • /
    • 1990
  • Four models in current use for cereal grain drying, equilibrium model, Morey model, partial differential equation model and simplified partial differential equation model, were modified to be suitable for natural air drying of barley. The predicted by the four models and experimental results were compared. Three models except equilibrium model predicted moisture comtent and grain temperature very well. But equilibrium model overpredicted moisture content and grain temperature of bottom layer. The degree of prediction of the four models for relative humidities of exhaust air didn't differ much from one another and equally the four models predicted relative humidity statisfatorily. Morey model took much shorter computing time than any other models. Therefore, considering the degree of prediction and computing time Morey model was the most suitable for natural air drying of barley.

  • PDF

단순전단유동에서 미분 구성방정식의 일차원적 불안정거동예 (Examples of One-Dimensional Dissipative Instabilities in Simple Shear Flow as Predicted by Differential Constitutive Equations)

  • 권영돈
    • 유변학
    • /
    • 제7권3호
    • /
    • pp.192-202
    • /
    • 1995
  • 이연구에서는 유변학 구성방정식이 나타내는 일차원 불안정성의 몇가지 예를 보였 다. 안정성 해석을 위하여 맥스웰형 미분구성방정식 Giesekus, Leonov, Larson 모델을 선택 하였다. 나타난 불안정성은 단순전단유동에서의 정상유동곡석이 무제한적 단수증가성을 위 배할 때 발생한다. 단순전단유동에 부과된 섭동하에서 Giesekus와 Larson 모델이 일정영역 의 무델계수와 전단율속도값에서 불안정 거동은 관성력을 고려하지 않은 경우에도 발생함이 증명되었다. 끝으로 이러한 불안정 거동을 개선하는 몇가지 방법을 Leonv와 Giesekus 모델 에 대하여 제시하였다.

  • PDF

가변용량형 피스톤 펌프의 안정적인 유량/압력제어를 위한 설계보상 (A Design Compensation for Stable Flow/Pressure Control of Variable Displacement Type Piston Pump)

  • 정동수;김형의;강이석
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.165-174
    • /
    • 2007
  • Variable displacement type piston pump uses various controllers for controlling more than one state quantity like pressure, flow, power, and so on. These controllers need the mathematical model closely expressing dynamic behavior of pump for analyzing the stability of control systems which usually use various kinds of state variables. This paper derives the nonlinear mathematical model for variable displacement type piston pump. This model consists of two 1st oder differential equations by the continuity equations and one 2nd oder differential equation by the motion equation. To simplify the model we obtain the linear state variable model by differentiating the three nonlinear equations. And we verify this linearized model by comparison of simulation with experimentation and analyze the stability for the flow/pressure control. Finally this paper suggests the design compensation to ensure the stability of the systems.

개수로에서 흐름방향 유속의 횡분포 이론식에 기반한 종분산계수 개발 : I. 흐름방향 유속의 횡분포 (Development of Longitudinal Dispersion Coefficient Based on Theoretical Equation for Transverse Distribution of Stream-Wise Velocity in Open Channel : Part I. Theoretical Equation for Stream-Wise Velocity)

  • 백경오
    • 한국수자원학회논문집
    • /
    • 제48권4호
    • /
    • pp.291-298
    • /
    • 2015
  • 본 연구의 목적은 하천에서 흐름방향 유속의 횡분포식에 기반하여 1차원 종분산계수를 이론적으로 유도하고 이들의 타당성을 검증하는 것이다. 이를 위해 본 논문의 전편 "I. 흐름방향 유속의 횡포식"에서는 Shiono-Knight Model (일명 SKM)을 도입하여 삼각형 단면수로에서 횡분포식을 해석적으로 유도하였다. 본 논문의 후편 "II. 종분산계수"에서는 전편에서 유도된 유속의 횡분포식을 Fischer (1968)의 삼중 적분식에 대입하여 1차원 종분산계수 이론식을 새롭게 개발하였다. 본래 SKM은 Navier-Stokes 방정식을 근간으로 개발되어 주로 직선수로이면서 사다리꼴 단면이나 복단면 수로에 적용되어 왔지만, 본 연구에서는 사행으로인한 최심선의 변동을 고려할 수 있는 삼각형을 단면형상으로 가정하였다. 유도된 해석해를 검증하기 위해 자연하천에서 실측된 유속자료와 비교 분석하였다. 또한 유도된 횡분포식을 이용하여 단면평균유속을 산정하고, 이를 Manning의 유속식의 결과와 비교 검증하였다. 본 연구에서 개발한 이론식은 비록 유속의 횡분포를 경우에 따라서 섬세하게 재현하지는 못하더라도 조도계수를 포함한 몇 가지 기본적인 수리 및 지형자료만 측량한다면 유속의 관측없이 비교적 정확한 유속분포를 산출해 낼 수 있는 장점이 있었다.

유한 요소 모델을 이용한 왕복동식 압축기 밸브의 거동 해석 및 형상 설계 민감도 해석 (Computer Simulation and Shape Design Sensitivity Analysis of the Valve inside the Reciprocal Compressor using Finite Element Model)

  • 이제원;왕세명;주재만;박승일;이성태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.796-801
    • /
    • 2002
  • The goal of this research is the shape design of the valve using a computer simulation. For an analysis a basic mathematical model describing compression cycle is considered as consisting of five sets of coupled equations. These are the volume equation (kinematics), valve dynamic equation (dynamics), ideal gas equation (thermodynamics), Bernoulli equation (fluid dynamics), and dynamic equation of fluid particle based on Helmholtz equation (acoustics). Valve motion is made by the superposition of free vibration modes obtained by the finite element method. That is, the eigenvalues and eigenvectors are the sufficient modeling factors fur the valve in the simulation program. Thus, to design a shape of the valve, shape design sensitivity through chain-ruled derivatives is considered from two sensitivity coefficients, one is the design sensitivity of the capability of compressor with respect to the eigenvalues of the valve, and the other is the design sensitivity of the eigenvalue with respect to the shape change of the valve. In this research, the continuum design sensitivity analysis concepts are used for the latter.

  • PDF

NEW WALL DRAG AND FORM LOSS MODELS FOR ONE-DIMENSIONAL DISPERSED TWO-PHASE FLOW

  • KIM, BYOUNG JAE;LEE, SEUNG WOOK;KIM, KYUNG DOO
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.416-423
    • /
    • 2015
  • It had been disputed how to apply wall drag to the dispersed phase in the framework of the conventional two-fluid model for two-phase flows. Recently, Kim et al. [1] introduced the volume-averaged momentum equation based on the equation of a solid/fluid particle motion. They showed theoretically that for dispersed two-phase flows, the overall two-phase pressure drop by wall friction must be apportioned to each phase, in proportion to each phase fraction. In this study, the validity of the proposed wall drag model is demonstrated though one-dimensional (1D) simulations. In addition, it is shown that the existing form loss model incorrectly predicts the motion of the dispersed phase. A new form loss model is proposed to overcome that problem. The newly proposed form loss model is tested in the region covering the lower plenum and the core in a nuclear power plant. As a result, it is shown that the new models can correctly predict the relative velocity of the dispersed phase to the surrounding fluid velocity in the core with spacer grids.

이산요소해석에 기초한 블레이드 형상에 따른 숏볼의 투사속도 예측 (Prediction of Velocity of Shot Ball with Blade Shapes based on Discrete Element Analysis)

  • 김태형;이승호;정찬기
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.844-851
    • /
    • 2018
  • In this study, the regression equation was suggested to predict of the shot ball velocity according to blade shapes based on discrete element (DE) analysis. First, the flat type blade DE model was used in the analysis, the validity of the DE model was verified by giving that the velocity of the shot ball almost equal to the theoretical one. Next, the DE analyses for curved and combined blade models was accomplished, and their analytical velocities of shot ball were compared with the theoretical one. The velocity of combined blade model was greatest. From this, the regression equation for velocity of shot ball according to the blade shape based on the DE analysis was derived. Additionally, the wind speed measurement experiment was carried out, and the experimental result and analytical one were the same. Ultimately, it was confirmed that the prediction method of the velocity of shot ball based on DE analysis was effective.

Boussinesq방정식을 이용한 불규칙파의 쇄파해석 (Numerical Analysis of Random Waves Breaking using Boussinesq Equation)

  • 이종인;김영택
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1931-1934
    • /
    • 2006
  • The accuracy impact of using high-order Boussinesq-type model as compared to the typical order model is examined in this paper. The multi-layer model developed by Lynett and Liu(2004a) is used for simulating of wave breaking over a step region. The overall comparisons between the two-layer model and the hydraulic experiments are quite good. The one-layer model overshoals the wave near the breakpoint, while the two-layer model shoals at a rate more consistent with the experimental data.

  • PDF

Load-level isolator model for pallets on industrial storage racks and validation with experimental results

  • Marcelo Sanhueza-Cartes;Nelson Maureira-Carsalade;Eduardo Nunez;Angel Roco-Videla
    • Steel and Composite Structures
    • /
    • 제52권1호
    • /
    • pp.1-14
    • /
    • 2024
  • This paper introduces a system allows for seismic isolation of the pallet from the rack in the down-aisle direction, occupies minimal vertical space (5 cm) and ±7.5 cm of deformation range. A conceptual model of the isolation system is presented, leading to a constitutive equation governing its behavior. A first experimental campaign studying the response of the isolation system's components was conducted to calibrate the parameters of its constitutive equation. A second experimental campaign evaluated the response of the isolation system with mass placed on it, subjected to cyclic loading. The results of this second campaign were compared with the numerical predictions using the pre-calibrated constitutive equation, allowing a double-blind validation of the constitutive equation of the isolation system. Finally, a numerical evaluation of the isolation system subjected to a synthetic earthquake of one component. This evaluation allowed verifying attributes of the proposed isolation system, such as its self-centering capacity and its effectiveness in reducing the absolute acceleration of the isolated mass and the shear load transmitted to the supporting beams of the rack.