DOI QR코드

DOI QR Code

Load-level isolator model for pallets on industrial storage racks and validation with experimental results

  • Marcelo Sanhueza-Cartes (Facultad de Ingenieria, Universidad Catolica de la Santisima Concepcion) ;
  • Nelson Maureira-Carsalade (Facultad de Ingenieria, Universidad Catolica de la Santisima Concepcion) ;
  • Eduardo Nunez (Facultad de Ingenieria, Universidad Catolica de la Santisima Concepcion) ;
  • Angel Roco-Videla (Universidad Arturo Prat)
  • Received : 2023.08.29
  • Accepted : 2024.06.20
  • Published : 2024.07.10

Abstract

This paper introduces a system allows for seismic isolation of the pallet from the rack in the down-aisle direction, occupies minimal vertical space (5 cm) and ±7.5 cm of deformation range. A conceptual model of the isolation system is presented, leading to a constitutive equation governing its behavior. A first experimental campaign studying the response of the isolation system's components was conducted to calibrate the parameters of its constitutive equation. A second experimental campaign evaluated the response of the isolation system with mass placed on it, subjected to cyclic loading. The results of this second campaign were compared with the numerical predictions using the pre-calibrated constitutive equation, allowing a double-blind validation of the constitutive equation of the isolation system. Finally, a numerical evaluation of the isolation system subjected to a synthetic earthquake of one component. This evaluation allowed verifying attributes of the proposed isolation system, such as its self-centering capacity and its effectiveness in reducing the absolute acceleration of the isolated mass and the shear load transmitted to the supporting beams of the rack.

Keywords

Acknowledgement

The authors thank the manager of the company "LEMUSSE Desarrollo e Ingenieria SpA", engineer Christian Leva, for his constructive comments suggested from a commercial point of view and industrial use of technology that allowed to improve this research work. The authors are also grateful to the DI-FMEI 06/2023 fund, granted by the Research Directorate of the Universidad Catolica de la Santisima Concepcion, Concepcion, Chile.

References

  1. Alhan, C. and Gavin, H.P. (2005), "Reliability of base isolation for the protection of critical equipment from earthquake hazards", Eng. Struct., 27(9), 1435-1449.
  2. Alvarez, O., Maureira, N., Nunez, E., Sanhueza, F. and RocoVidela, A. (2021), "Numerical study on seismic response of steel storage racks with roller type isolation", Metals, 11(1), 158.
  3. Beattie, G.J. (2006), "A design guide for high level storage racking with public access", In NZSEE Conference, 8.
  4. Bernardi, E., Dona, M., Tan, P. and da Porto, F. (2023), "Optimal design method of the load-level isolation system for industrial steel racking", J. Construct. Steel Res., 210, 108096.
  5. Brown, C., Stevenson, J., Giovinazzi, S., Seville, E. and Vargo, J. (2015), "Factors influencing impacts on and recovery trends of organizations: Evidence from the 2010/2011 Canterbury earthquakes", Int. J. Disaster Risk Reduct., 14, 56-72.
  6. Crosier, J., Hannah, M. and Mukai, D. (2010), "Damage to steel storage racksin industrial buildings in the darfield earthquake", Bull. New Zealand Soc. Earthq. Eng., 43(4), 425.
  7. Cull, S.J. and Tucker, R. (1999), "On the modeling of Coulomb friction", J. Phys. A: Mathem. General, 32(11), 2103.
  8. Dona, M., Bernardi, E., Zonta, A., Ceresara, M. and da Porto, F. (2022), "Effectiveness of load-level isolation system for pallet racking systems", Front. Built Environ., 148.
  9. Dona, M., Bizzaro, L., Carturan, F. and da Porto, F. (2019), "Effects of business recovery strategies on seismic risk and cost-effectiveness of structural retrofitting for business enterprises", Earthq. Spectra, 35(4), 1795-1819.
  10. Federal Emergency Management Agency FEMA 460 (2005), Seismic Considerations for Steel Storage Racks Located in Areas Accessible to the Public. Federal Emergency Management Agency, Washington, D.C.
  11. Ferrari, M. (2019), "Lokibase: The device for seismic isolation of pallet racking systems", Costruzioni Metalliche, 3, 82-91.
  12. Filiatrault, A., Higgins, PS, Wanitkorkul, A., Courtwright, J.A. and Michael, R. (2008), "Experimental seismic response of base isolated pallet-type steel storage racks", Earthq. Spectra, 24(3), 617-639.
  13. Forcellini, D. and Kalfas, K.N. (2023), "Inter-story seismic isolation for high-rise buildings", Eng. Struct., 275, 115175.
  14. Franco, A., Massimiani, S. and Royer- Carfagni, G. (2015), "Passive control of steel storage racks for parmigiano reggiano cheese under seismic accelerations", J. Earthq. Eng., 19(8), 1222-1259.
  15. Fukahori, Y., Kojima, H., Ogino, A., Suzuki, S. and Yoshizawa, T. (1990), "US Patent No. 4,899,323. Washington, DC: US Patent and Trademark Office.
  16. Gutelius Jr, J.B., McIntosh, S.C. and Notohardjono, B.D. (2000), US Patent No. 6,059,251.
  17. HClifton, C., Bruneau, M., MacRae, G., Lion, R. and Russell, T.O. (2011), "Steel structures damage desde the Christchurch earthquake series of 2010 and 2011", Bull. New Zealand Society Earthq. Eng., 44(4), 297-318.
  18. Kelly, R., Llamas, J. and Campa, R. (2000), "A measurement procedure for viscous and coulomb friction", IEEE Transact. Instrument. Measurement, 49(4), 857-861.
  19. Kilar, V., Petrovcic, S., Koren, D. and Silih, S. (2013), "Cost viability of a base isolation system for the seismic protection of a steel high-rack structure", Int. J. Steel Struct., 13, 253-263.
  20. Liu, Y., Wu, J. and Dona, M. (2018), "Effectiveness of fluid-viscous dampers for improved seismic performance of interstorey isolated buildings", Eng. Struct., 169, 276-292.
  21. Maureira- Carsalade, N., Balboa-Constanzo, E., Sanhueza-Cartes, M., Sanhueza, C., Nunez, E. And Roco-Videla, A. (2023), "Proof of concept and preliminary validation of an analytical model of an energy dissipator for tension loads with self-centering capacity", Buildings, 13(3), 726.
  22. Maureira- Carsalade, N., Pardo, E., Oyarzo-Vera, C. and Roco, A. (2020), "A roller type base isolation device with tensile strength", Eng. Struct., 221, 111003.
  23. Maureira- Carsalade, N., Villagran-Valenzuela, M., Sanzana-Jara, D. and Roco-Videla, A. (2021), "Proof of concept of a novel frictional shock absorber; analytical model and experimental analysis", Eng. Struct., 230, 111657.
  24. Maureira, N. (2018), Patent application No. PCI/IB2018/059935, 2018. National Property Institute Intellectual-INAPI: Santiago, Chile.
  25. Michael, R.J., Courtwright, J.A., Ferro, E.B., Filiatrault, A., Higgins, P.S. and Wanitkorkul, A. (2010), "Development of a new base isolation system for seismic isolation of steel pallet storage racks", In Proceedings of the 9th US National and 10th Canadian Conference on Earthquake Engineering (9USN10CEE), Toronto, ON, Canada (pp. 25-29).
  26. Miranda, E., Mosqueda, G., Retamales, R. and Pekcan, G. (2012), "Performance of nonstructural components during the 27 February 2010 Chile earthquake", Earthq. Spectra, 28(1_suppl1), 453-471.
  27. Mucciarelli, M. and Liberatore, D. (2014), "Guest editorial: the Emilia 2012 earthquakes, Italy", Bull. Earthq. Eng., 12, 2111-2116.
  28. Pan, T.C. and Cui, W. (1998), "Response of segmental buildings to random seismic motions", ISET J. Eng. Technol., 35(4), 105-112.
  29. Pan, T.C., Ling, S.F. and Cui, W. (1995), "Seismic response of segmental buildings", Earth. Eng. Struct. Dyn., 24(7), 1039-1048.
  30. Pellegrino, J.B., Courtwright, J.A. and Michael, R. (2007), US Patent No. 7,263,806. Washington, DC: US Patent and Trademark Office.
  31. Perrone, D., Calvi, PM, Nascimbene, R., Fischer, E.C. and Magliulo, G. (2019), "Seismic performance of non-structural elements during the 2016 Central Italy earthquake", Bull. Earthq. Eng., 17(10), 5655-5677.
  32. Rossi, L., Holtschoppen, B. and Butenweg, C. (2019), "Official data on the economic consequences of the 2012 Emilia-Romagna earthquake: a first analysis of database SFINGE", Bull. Earthq. Eng., 17, 4855-4884.
  33. Shaheen, M.S. and Rasmussen, K.J. (2022), "Development of friction-damped seismic fuses for steel storage racks", J. Construct. Steel Res., 192, 107216.
  34. Sideris, P., Filiatrault, A., Leclerc, M. and Tremblay, R. (2010), "Experimental investigation on the seismic behavior of palletized merchandise in steel storage racks", Earthq. Spectra, 26(1), 209-233.
  35. Simoncelli, M., Tagliafierro, B. and Montuori, R. (2020), "Recent development on the seismic devices for steel storage structures", Thin-Wall. Struct., 155, 106827. https://doi.org/10.1016/j.tws.2020.106827.
  36. Tagliafierro, B., Rosario, M. and Maria Gabriella, C. (2021), "Shake table testing and numerical modeling of a steel pallet racking structure with a seismic isolation system", Thin-Wall. Struct., 164(2021), 107924.
  37. Tang, Z., Clifton, G., Lim, J., Maguire, J. and Teh, L. (2017), "Increasing seismic resilience of pallet racking systems using sliding friction baseplates", In Proceedings of the 2017 New Zealand Society for Earthquake Engineering (NZSEE) Conference, Wellington, New Zealand, 27-29.
  38. Uma, S.R. and Beattie, G. (2011), "Observed performance of industrial pallet rack storage systems in the canterbury earthquakes", Bull. New Zealand Soc. Earthq. Eng., 44(4), 388-393.
  39. Wang, S.J., Chang, K.C., Hwang, J.S., Hsiao, J.Y., Lee, B.H. and Hung, Y.C. (2012), "Dynamic behavior of a building structure tested with base and mid-story isolation systems", Eng. Struct., 42, 420-433.