• Title/Summary/Keyword: One step type pole

Search Result 7, Processing Time 0.024 seconds

A Calculation of Unbalanced Current on Neutral Line in Two Step Type Pole (2단장주 중성선 불평형 전류 계산)

  • Park, Keon-Woo;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.484-485
    • /
    • 2006
  • The one step type pole and two step type pole are used in KEPCO's distribution system. The neutral current may occurs in three-phase four-wire distribution system due to unbalanced load. This paper presents neutral current both one step type pole and two step type pole in distribution system.

  • PDF

Neutral Current Calculation of the One Step Type Pole using KEPCO's Distribution System (한전 실 배전계통 모델을 이용한 1단 장주 중성선 전류 계산)

  • Seo, H.C.;Park, K.W.;Kim, C.H.;Jung, C.S.;Yoo, Y.P.;Lim, Y.H.;Seol, I.H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • The one step type and two step type pole are used in distribution line. If the three phases are not balanced, the communication line can be damaged by induced voltage. This paper calculates the neutral current using KEPCO's distribution system model which is only composed by one step type pole. The used system model is modelled by using ATPDraw and the neutral current is calculated by using EMTP/MODELS. Many cases for abstracting the neutral current characteristics in KEPCO's distribution system are simulated and analyzed.

A Study on the Effects of Neutral Current by Unbalanced Load in Two Step Type Pole using KEPCO's Distribution System (한전 배전 계통을 이용한 2단장주의 불평형 부하에 따른 중성선 전류의 영향에 관한 연구)

  • Park, K.W.;Seo, H.C.;Kim, C.H.;Jung, C.S.;Yoo, Y.P.;Lim, Y.H.;Lee, W.J.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.465-471
    • /
    • 2007
  • The one step type pole and two step type pole are used in KEPCO's distribution system. The neutral current increases in three-phase four-wire distribution system due to unbalanced load. Usually, power line and communication line are installed at contiguity by effect of topography in Korea. To this end, the damages such as electrostatic induction, electromagnetic induction and harmonic induction generated by induced voltage and current are occured in power line and communication line. This paper calculates the neutral current in KEPCO's distribution system using EMTP by composing various simulated conditions. Also, these results are verified by vector analysis.

Neutral Current Calculation of Pole-Top Overhead Distribution Line (가공 배전선로 장주의 중성선 전류 계산)

  • Seo, Hun-Chul;Kwon, O-Sang;Kim, Chul-Hwan;Jung, Chang-Soo;Yoo, Yeon-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.290-296
    • /
    • 2006
  • If the three phases are not balanced, the current in neutral wire is not zero. Then, the induced voltage can be generated in communication line. The KEPCO's rule about unbalanced current for one step type in distribution pole is a twenty percent of phase current. But the unbalanced current for two step type in distribution pole can't decide the rule because there are many different views. This paper presents the calculation and analysis technique of neutral current in distribution poles using equivalent circuit analysis and EMTP simulation.

Neutral Current Calculation in One Step Type Pole (1단장주 중성선 전류 계산)

  • Seo, Hun-Chul;Park, Keon-Woo;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.480-481
    • /
    • 2006
  • This paper presents computation of the neutral torrent using KEPCO's distribution system model which is composed by only one step type poles. The used system model is modelled and simulated by using ATPDraw. And the neutral current is calculated by using EMTP/MODELS.

  • PDF

New Target Transfer Functions with No Overshoot

  • Yang, Dae--Jeong;Kim, Young-Chol
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.14-20
    • /
    • 2001
  • To design a controller based on the pole placement method, it is necessary to obtain either a target transfer function or a desired characteristic equation which results in the closed-loop response. Specially, a step response in which no overshoot occurs in highly desirable in many applications. In this paper, we present two new present two new prototypes of Type I target transfer functions whose step responses have an overshoot of less than 0.1%. One prototype is obtained by Taylor's approximation of a Gaussian function. It is, however, observed that the response delays increase with increasing order, while the rise times are nearly constant. The other prototype is a modification of the first prototype, so that their transfer function coefficients have particular values in terms of specific parameters ${\gamma}$i and $\tau$ (see section 2). The second prototype gives very useful properties in which step responses are almost the same shape, irrespective of the order. It, also, has no overshoot. Some other properties of the prototypes and an application example are given.

  • PDF

The Characteristices of Step Responses of the Manabe Standard Forms and Its Application to the Controller Desegn (Manabe 표준형의 계단 응답 특성 및 제어기설계에의 응용)

  • Gang, Hwan-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.586-592
    • /
    • 1999
  • We investigate the characteristic of 소데 responses of the Manabe standard form which is used recently for design of the controller. We obtain some theorems and these theorems have the properties of the relationship between the roots of the polynomial and the stability indices which are used for the Manabe standard form. The Manabe standard form has the following properties: The sum of the squal to zero, the sum of the reciprocal of the squared roots is greater than zero and the parameter $\tau$ is the negative value of the sum of the reciprocal of the roots. We compare the step responses of the Manabe standard form with those of the ITAE form, the dead beat response and Bessel forms. We choose the 6th order closed loop polynomial and keep the same settling time for the four forms. Under these conditions we find that the Manabe standard form have faster 90% rising time than the Bessel and dead beat response. We see that the ITAE, bessel and dead beat responses have some overshoot, whereas the Manabe standard form has none. We also compare the Manabe form with the other three forms for the controller design using the pole assignment technique. If the open loop transfer function is a type-1 system (transfer functions having one integrator), then, for the closed loop system associated with the open loop transfer function, the steady state error of the unit ramp input is obtained in terms of the parameter $\tau$ of the Manabe standard form.

  • PDF