• Title/Summary/Keyword: On-site investigation

Search Result 1,245, Processing Time 0.031 seconds

Investigation on Characteristics of High PM2.5 Pollution Occurred during October 2015 in Gwangju (광주 지역에서 2015년 10월에 발생한 PM2.5 고농도 사례 특성 분석)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Lim, Yong Jae;Shin, Hye Jung;Lee, Sang Bo;Ghim, Young Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.567-587
    • /
    • 2018
  • A severe haze event occurred in October 2015 in Gwangju, Korea. In this study, the driving chemical species and the formation mechanisms of $PM_{2.5}$ pollution were investigated to better understand the haze event. Hourly concentrations of $PM_{2.5}$, organic and elemental carbon, water-soluble ions, and elemental constituents were measured at the air quality intensive monitoring station in Gwangju. The haze event occurred was attributed to a significant contribution (72.3%) of secondary inorganic species concentration to the $PM_{2.5}$, along with the contribution of organic aerosols that were strongly attributed to traffic emissions over the study site. MODIS images, weather charts, and air mass backward trajectories supported the significant impact of long-range transportation (LTP) of aerosol particles from northeastern China on haze formation over Gwangju in October 2015. The driving factor for the haze formation was stagnant atmospheric flows around the Korean peninsula, and high relative humidity (RH) promoted the haze formation at the site. Under the high RH conditions, $SO{_4}^{2-}$ and $NO_3{^-}$ were mainly produced through the heterogenous aqueous-phase reactions of $SO_2$ and $NO_2$, respectively. Moreover, hourly $O_3$ concentration during the study period was highly elevated, with hourly peaks ranging from 79 to 95ppb, suggesting that photochemical reaction was a possible formation process of secondary aerosols. Over the $PM_{2.5}$ pollution, behavior and formation of secondary ionic species varied with the difference in the impact of LTP. Prior to October 19 when the influence of LTP was low, increasing rate in $NO_3{^-}$ was greater than that in $NO_2$, but both $SO_2$ and $SO{_4}^{2-}$ had similar increasing rates. While, after October 20 when the impact of haze by LTP was significant, $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations increased significantly more than their gaseous precursors, but with greater increasing rate of $NO_3{^-}$. These results suggest the enhanced secondary transformation of $SO_2$ and $NO_2$ during the haze event. Overall, the result from the study suggests that control of anthropogenic combustion sources including vehicle emissions is needed to reduce the high levels of nitrogen oxide and $NO_3{^-}$ and the high $PM_{2.5}$ pollution occurred over fall season in Gwangju.

A Study on Commemorative Landscape in Holocaust Concentration Camp Memorials of Germany and Poland (홀로코스트 강제수용소 메모리얼에 나타난 기념적 경관)

  • Lee, Sang-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.98-114
    • /
    • 2017
  • This study analyzed the commemorative landscapes of eight Holocaust concentration camp memorials(HCCM) of Germany and Poland from a landscape architecture point of view including historical landscape, places and remains, and monuments. A site survey was conducted at Dahau concentration camp memorial(CCM) and Bergen-Belsen CCM of Germany in September of 2015 and the Auschwitz-Birkenau extermination camp memorial(ECM), Majdanek ECM, Belzec ECM, Sobibor ECM, Treblinka ECM, Chelmno ECM of Poland in April of 2016. The results are as follows. First, the landscape of the concentration camp at Dahau CCM, Auschwitz ECM, and Majdanek ECM liberated by the Allied Forces was well conserved with the maintenance of camp facilities and the spatial structure of camps while monuments and memorials seized by sociopolitical argument were built with restriction. But Belzec ECM, Sobibor ECM, Treblinka ECM, and Chelmno ECM devastated and planted artificially to forest were overwhelmingly surrounded with natural landscape, and also, excavated relics and remains were preserved and the monuments were built at the place of memory. Second, gas chambers, crematoriums, guard posts, electric wire fences, railroads and ramps, barracks, and drainage ditches were considered to be typical facilities present in the camp structure and the gas chambers, crematoriums, human ashes, and mass graves demonstrated the horrible history of these camps and the railroad and ramp where Jewish prisoners arrived also had the strong sense of place. These remains were regarded as symbolic elements to create a memory of the tragedy and place. Third, commemoration of victims was applied as the basic concept and recalling the memory of the Holocaust was also considered very important content. Religious reconciliation and peace was represented at Dahau CCM and the Jewish identity was strongly expressed at Treblinka ECM and Belzec ECM representing the Jewish community and Judaism. Fourth, the monuments with semi-abstract styles and abstract sculptures represented the Holocaust symbolically and narratively and came into the conflict caused by the abstractness to the memorial landscape at Auschwitz-Birkenau ECM and Bergen-Belsen CCM. Fifth, remains for recalling the memory of tragedy and place and symbolic monuments to stand for public memory were juxtaposed at the same place and preserving on the authenticity of camp site had been conflicted with monumentalizing intentionally. Further study will required a concrete investigation of the monuments in the HCCM and an attempt to comparatively study the commemoration characteristics of memorials in Korea.

A Study on Hydrogeological Characteristics of Deep-Depth Rock Aquifer by Rock Types in Korea (국내 암종별 고심도 암반대수층 수리지질특성 연구)

  • Hangbok Lee;Chan Park;Dae-Sung Cheon;Junhyung Choi;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.374-392
    • /
    • 2024
  • In order to successfully select a site for deep geological disposal of high-level radioactive waste, it is important to perform the stepwise approach along with the systematic selection and survey of evaluation parameters of geological environmental characteristics suitable for the domestic geological environment. In this study, we evaluated the characteristics of hydraulic conductivity, which is considered the most important evaluation parameter in the field of hydrogeology, targeting a deep-depth rock aquifer where actual disposal facilities are expected to be located. In particular, for the first time in Korea, we obtained in-situ pressure-flow data by directly conducting hydraulic tests in boreholes at depths ranging from 500 m to 750 m in various rock types distributed in Korea (granite/volcanic rock/gneiss/mudstone). And we derived hydraulic conductivity values by rock types and depth using verified analytical methods. For this purpose, precision hydraulic testing equipment developed in-house through this study was used, and detailed investigation procedures based on standard test methods were applied to field tests. As a result of the analysis, the average hydraulic conductivity value was found to be in the range of 10-9 m/s in all granite/volcanic rock/gneiss areas. In the mudstone area, an average hydraulic conductivity value of 10-11 m/s was derived, which was about 100 times (2 orders of magnitude) lower than that of the fractured rock aquifers. Moreover, permeability tended to slightly decrease with depth in fractured rock aquifers (granite and volcanic rock areas) containing many rock fractures. The gneiss area tended to have large local differences in permeability according to the composition of the stratum and the development of fracture zones rather than depth. In mudstone areas with weak fracture development, there was no significant variation in rock permeability according to depth. The hydraulic conductivity results by various rock types and depth presented in this study are expected to be utilized in building a foundational database for the site selection, design, and construction of disposal facilities in Korea.

Screening and Possibility of Semi-quantitative Analysis of Explosive Compounds in Soil Using EXPRAY$^{(R)}$ Explosives Field Detection Kit (화약물질 현장검출시약 EXPRAY$^{(R)}$를 이용한 토양내 화약물질 스크리닝 및 준정량화 가능성)

  • Bae, Bum-Han;Cho, Jung-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 2009
  • A quick and simple detection method of explosive compounds in environmental matrix (soil and water) can provide a screening step which reduces the number of unnecessary samples and the cost of expensive laboratory analysis at a site investigation. A commercially available EXPRAY$^{(R)}$Explosives Field Detection Kit (EXPRAY) was used to determine the minimum detection concentration and to test the possibility of semi-quantitative analysis of 14 explosive compounds using standard solutions. The results showed that EXPRAY could detect 5 explosive compounds, TNT, RDX, HMX, Tetryl, and TNB, out of 14 US EPA designated explosives. The minimum detection limit of the nitramine explosives was 14 ng/$^2$ for HMX and RDX. EXPRAY was more sensitive to nitroaromatics than the nitramines and the minimum detection limits per unit area (mm$^2$) for Tetryl, TNB, and TNT, were 3 ng, 3 ng, and 0.3 ng, respectively. The semi-quantification of 5 explosive compounds in an order ofmagnitude could be achieved by the intensity of developed color only when EXPRAY was applied on the standard solutions under controlled laboratory conditions. With contaminated soil samples, however, only the presence and type of explosive compounds was identified. Therefore, EXPRAY is an economic and sensitive method that can be used in a screening step for the identification of explosives in the field samples.

Investigation of PM2.5 Pollution Episodes in Gwangju (광주지역 PM2.5의 고농도 오염현상 조사)

  • Yu, Geun-Hye;Cho, Sung-Yong;Bae, Min-Suk;Lee, Kwon-Ho;Park, Seung-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.269-286
    • /
    • 2015
  • 24-hr integrated $PM_{2.5}$ measurements were performed between December 2013 and October 2014 at an urban site in Gwangju and the collected samples were analyzed for organic carbon (OC), elemental carbon (EC), ionic species, and elemental species. Objectives of this study were to identify $PM_{2.5}$ pollution episodes, to characterize their chemical components, and to examine their probable origins. Over the course of the study period, average $PM_{2.5}$ concentration was $37.7{\pm}23.6$ $(6.0{\sim}121.5){\mu}g/m^3$. Concentrations of secondary ionic species; $NH_4{^+}$, $NO_3{^-}$, and $SO_4{^{2-}}$ was on average $5.54{\mu}g/m^3$ (0.28~ 20.86), $7.60{\mu}g/m^3$ (0.45~ 33.53), and $9.05{\mu}g/m^3$ (0.50~ 34.98), accounting for 13.7% (4.6~ 22.7), 18.6% (2.9~ 44.8), and 22.9% (4.9~ 55.1) of the $PM_{2.5}$ concentration, respectively. Average OC and EC concentrations were $5.22{\mu}g/m^3$ and $1.54{\mu}g/m^3$, taking possession of 4.6 and 22.2% (as organic mass) of the $PM_{2.5}$, respectively. Frequencies at which 24-hr averaged $PM_{2.5}$ exceeded a 24-hr averaged Korean $PM_{2.5}$ standard of $50{\mu}g/m^3$ (termed as an "episode" in this study) were 30, accounting for 21.3% of total 141 measurements. These pollution episodes were mostly associated with haze phenomenon and weak surface wind speed. It is suggested that secondary formation of aerosol was one important formation mechanism of the episodes. The episodes were associated with enhancements of organic mass, $NO_3{^-}$ and $SO_4{^{2-}}$ in winter, of $NO_3{^-}$ and $SO_4{^{2-}}$ in spring, and of $SO_4{^{2-}}$ in summer. Potential source contribution function results indicate also that $PM_{2.5}$ episodes were likely attributed to local and regional haze pollution transported from northeastern China in winter, to atmospheric processing of local emissions rather than long-range transport of air pollutants in spring, and to the $SO_4{^{2-}}$ driven by photochemistry of $SO_2$ in summer.

Basic Research to Develop PGM-free DeNOx Catalyst for LNT (LNT용 PGM-free DeNOx 촉매 개발을 위한 기초연구)

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.117-123
    • /
    • 2015
  • This inquiry was conducted to develop DeNOx catalyst for LNT. In order to develop appropriate catalysts, four catalysts, which do not use PGM (Platinum Group Metal), were carefully selected : Al/Co/Mn, Al/Co/Ni/Mn, Al/Co/Mn/Ca, Al/Co/Ni mixed metal oxides during preliminary experiments. Also, XRD, EDS, SEM, BET and TPD tests were carried as well to evaluate both physicochemical properties of such four catalysts. As a result of the experiment, four catalysts were composed of spinel-shaped crystals and had more than enough pore volume and size to have oxidation-reduction reaction of NOx gases. Additionally, through TPD test, all four types of catalysts were proved to possibly have an oxidation-reduction acid site and NO oxidation activities similar to commercial catalysts. Based on the results above, if we have further change in the composition components and active ingredients according to the catalysts that were chosen in this investigation, then we are more welcomed to expect to have an enhanced DeNox catalyst for LNT.

Potential Contamination of Soil and Groundwater from the Residual Mine Tailings in the Restored Abandoned Mine Area : Shihung Mine Area (페광산 복구지역 잔류장미로 인한 주변 지하수${\cdot}$토양 오염가능성-시흥광산 사례)

  • 정예진;이상훈
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.461-470
    • /
    • 2001
  • The Shihung mine was restored in the early 90's after abandonment for 20 yews since 1973. Although disposed mine tailings were removed and the site was replaced by an incineration plant, still some residual mine tailings remain in the places including the old mine tailing ditposal area and the adjacent agricultural area. These residual mine tailings are prone to impose an adverse impact on the soil and groundwater and needs investigation for the potential contamination. Mine tailing samples were collected from the old tailing disposal area and the iii paddy. The porewater from the mine tailing were extracted and analysed to investigate chemical changes along the reaction path. Batch leaching tests were also carried out in the laboratory to find any supporting evidence found in the field analysis. Evidence of elemental leaching was confirmed both by the mine tailing and the porewater chemistry in them. The element concentrations of Cu, Cd, Pb, Zn in the porewater exceed the standard for drinking water of Korean government and US EPA. Leaching of heavy metals from the mine tailing seem to be responsible for the contamination. In batch leaching test. heavy metals were either continuous1y released or declined rapidly. Combining the information with porewater variation with depths and the geochemical meodeling results, most of elements are controlled by dissolution and/or precipitation processes, with some solubility controlling solid phases (Cu, Pb, Fe and Zn). Batch leaching test conducted at fixed pH 4 showed much higher releases for the heavy metals up to 400 times (Zn) and this area is becoming more vulnerable to soil and groundwater pollution as precipitation pH shifts to acidic condition.

  • PDF

A Study on Geology and Clay Minerals of the Landslide Area in the Munhyun-dong, Nam-gu, Pusan (부산시 남구 문현동 산사태 지역의 지질 및 점토광물에 대한 연구)

  • 황진연;김선경;김춘식
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.113-125
    • /
    • 1999
  • In this study the occurrence and mineralogical characteristics of clay minerals from the Munhyun-dong landslide area in Pusan city were examined by XRD, SEM, and chemical analyses. Several types of clay minerals such as halloysite, vermiculite, mica/vermiculite interstratified mineral, vermiculite/smectite interstratified mineral, kaolinite and illite are found abundantly in the area. The occurrence of clay minerals suggest that they have been formed by weathering of andesite which is the bedrock of the area. It is believed that halloysite was formed in the early stage of weathering, and vermiculite, mica/vermiculite interstratified mineral and mica/vermiculite interstratified mineral were formed in the middle stage, and finally, kaolinite was formed. The clay minerals occurring in the central part of the landsliding area and within the slip surface are dominated by expandable minerals such as halloysite, vermiculite and vermiculite/smectite interstratified mineral. These clay minerals expand by absorbing water and effectively decrease the shear resistance of the rock mass, and therefore, they could be an important factor for the landslide. The analyses of geology and mineralogical characteristics of the area suggest that the landslide was caused by combination of various factors including steep slope, heavy rainfall, abundant joints, alteration of the rocks, and occurrence of expandable clay minerals. The result of this study suggests that the investigation for the prevention of possible landslide must include the examination of clay mineralogy as well as the site geology.

  • PDF

Follow-up Maintenance System Development for the Forest Erosion Control Structures (산지사방공작물(山地砂防工作物)의 사후관리기술체계설정(事後管理技術體系設定)을 위한 조사연구(調査硏究))

  • Woo, Bo Myeong;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.2
    • /
    • pp.145-160
    • /
    • 1987
  • To evaluate damage status and necessities of repair works on the forest-side erosion control structures constructed from 1966 to 1986 in Korea, developmental procedures of erosion control structures from the standard unit-cost tables established by the Forestry Administration every year, existing counter-measures for disaster erosion control system administrated by the government organization and existing status of each structure at constructed site were investigated and analyzed integrally. About 10-15% of the constructed forest erosion control structures were required to be repaired as a result of the investigation. It is actually incapable of repairing the damaged forest erosion control structures caused by excessive run-off and floodings under the existing forest-side erosion control systems. Therefore, it is necessary to put regularly repair erosion control system that will be secured by national budgetary pre-allocation system. Especially, it is also necessary to frame a new system that repair erosion control works by national budget (central government) should be possible for any scale of damages in case of the erosion control projects for the disaster counter-measures. The results of this research could be adopted as important policy data for erosion control policy-making in forest-side in Korea.

  • PDF

An Accuracy Evaluation of Algorithm for Shoreline Change by using RTK-GPS (RTK-GPS를 이용한 해안선 변화 자동추출 알고리즘의 정확도 평가)

  • Lee, Jae One;Kim, Yong Suk;Lee, In Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.81-88
    • /
    • 2012
  • This present research was carried out by dividing two parts; field surveying and data processing, in order to analyze changed patterns of a shoreline. Firstly, the shoreline information measured by the precise GPS positioning during long duration was collected. Secondly, the algorithm for detecting an auto boundary with regards to the changed shoreline with multi-image data was developed. Then, a comparative research was conducted. Haeundae beach which is one of the most famous ones in Korea was selected as a test site. RTK-GPS surveying had been performed overall eight times from September 2005 to September 2009. The filed test by aerial Lidar was conducted twice on December 2006 and March 2009 respectively. As a result estimated from both sensors, there is a slight difference. The average length of shoreline analyzed by RTK-GPS is approximately 1,364.6 m, while one from aerial Lidar is about 1,402.5 m. In this investigation, the specific algorithm for detecting the shoreline detection was developed by Visual C++ MFC (Microsoft Foundation Class). The analysis result estimated by aerial photo and satellite image was 1,391.0 m. The level of reliability was 98.1% for auto boundary detection when it compared with real surveying data.