• 제목/요약/키워드: On-current

검색결과 53,975건 처리시간 0.068초

지중송전계통의 시스순환전류 저감에 관한 연구 (A Study on the Reduction of Sheath Circulating Current in Underground Transmission Systems)

  • 정채균;홍동석;이종범;강지원;유철환;강원탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.29-33
    • /
    • 2001
  • Sheath circulating current results from the change of sheath mutual impedance which is caused by unbalanced cable system, and different section length between joint boxes. If circulating over current flows in sheath, it produces much sheath loss which reduces the transmission capacity. And also such large sheath current influences severely on the operator. Recently, large sheath circulating current was partially measured in underground cable system of KEPCO. Accordingly, actual schemes to reduce sheath circulating over current is urgently required for installed cable system as well as newly-constructing cable system. This paper describes the analysis of sheath circulating current and various schemes to reduce the large circulating current in case of operating cable system using EMTP/ATPDraw. And also, possible schemes are proposed through a detailed analysis regarding cable systems by considering various electrical and environmental factors. It is evaluated that the proposed reduction schemes can be effectively applied to reduce the large sheath circulating over current with the minimized electrical problems.

  • PDF

Structure and Vorticity of the Current Observed Across the Western Channel of the Korea Strait in September of 1987-1989

  • Byun, Sang-Kyung;Kaneko, Arata
    • Ocean and Polar Research
    • /
    • 제21권2호
    • /
    • pp.99-108
    • /
    • 1999
  • With sectional data obtained in September of 1987, 1988 and 1989 by quadrireciprocal ADCP measurement and CTD cast, the current structure, volume transport and vorticity in the Western Channel of the Korea Strait were studied. The characteristics of Tsushima Current water persisted throughout the summer especially in the homogeneous water of temperature $14-16^{\circ}C$ located at the depth of 50-100m below seasonal termocline. Thickness and velocity of the homogeneous layer are about 10-170m and 20-60cm/s. and the relative vorticity for this layer is shown to be nearly constant and it is smaller than the planetary vorticity. Potential vorticity of $2.70-7.10{\times}10^{-6}m^{-1}s^{-1}$ is found to be dependent mainly on planetary rather than on the relative vorticities. The Tsushima Current water represented by the homogeneous layer R14-16^{\circ}C$ may keep the potential vorticity at the area of strong current in the Strait. The ADCP current structure is similar to geostrophic current and the core of the current with the speed of 30-50cm/s is situated in the middle layer over the deep trough. With large tidal fluctuation the volume transport has mean value of 1.17sv which was about 40% larger than that of geostrophic calculation.

  • PDF

해석적 방법을 이용한 표면부착형 영구자석 기기의 회전자 와전류 손실해석 (Eddy-Current Loss Analysis in Rotor of Surface-Mounted Permanent Magnet Machines Using Analytical Method)

  • 최장영;최지환;장석명;조한욱;이성호
    • 전기학회논문지
    • /
    • 제61권8호
    • /
    • pp.1115-1122
    • /
    • 2012
  • This paper analyzes eddy-current loss induced in magnets of surface-mounted permanent magnet (SPM) machines by using an analytical method such as a space harmonic method. First, on the basis of a two-dimensional (2D) polar coordinate system and a magnetic vector potential, the analytical solutions for the flux density produced by armature winding current are obtained. By using derived field solutions, the analytical solutions for eddy current density distribution are also obtained. Finally, analytical solutions for eddy current loss induced in rotor magnets are derived by using equivalent electrical resistance calculated from magnet volume and analytical solutions for eddy-current density distribution. In particular, the influence of time harmonics in armature current on the eddy current loss is fully investigated and discussed. All analytical results are validated extensively by finite element analysis (FEA).

병렬연결된 두 코일의 자기결합을 이용한 초전도 전류제한기의 전류제한 및 전압강하 보상 특성 분석 (Analysis on Current Limiting and Voltage Sag Compensating Characteristics of a SFCL using Magnetic Coupling of Parallel Connected Two Coils)

  • 임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제23권2호
    • /
    • pp.159-163
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the SFCL using magnetic coupling of two coils with parallel connection has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. In this paper, the current limiting and the voltage sag compensating characteristics of a SFCL using magnetic coupling of parallel connected two coils were analyzed. Through the analysis on the experimental results considering the winding direction of two coils, the SFCL designed with the additive polarity winding was shown to have the higher limited fault current than the SFCL designed with the subtractive polarity winding. In addition, it could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • 제43권4호
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

시뮬레이션을 통한 자기결합을 이용한 초전도 한류기의 전류제한 특성 분석 (An Analysis on Current Limiting characteristics of an SFCL using Magnetic Coupling between Two Coils through Computer Simulation)

  • 김진석;안재민;임성훈;문종필;김재철;김철환;현옥배
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권1호
    • /
    • pp.42-47
    • /
    • 2008
  • In this paper, the fault current limiting characteristics for the superconducting fault current limiter(SFCL) using magnetic coupling between two coils were investigated. The SFCL consists of a high-$T_c$ superconducting(HTSC) element and two coils. This SFCL has different characteristics that depend on the connection form, the winding direction and the inductance ratio of two coils. The impedance and the operational current of the SFCL can be adjusted higher or lower than the resistance and the critical current of HTSC element. Therefore, the SFCL can change the amplitude of the limited fault current. To confirm it, the HTSC element was modeled and the fault current limiting characteristics of the SFCL were analysed through computer simulation. It was obtained from the analysis that the connection form and the winding direction of two coils of the SFCL were the important design parameters.

190 kVA급 초전도한류소자의 특성 (Characteristics of a 190 kVA Superconducting Fault current Limiting Element)

  • 마용호;이주영;박권배;오일성;류경우
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.37-42
    • /
    • 2007
  • We are developing a 22.9 kV/25 MVA superconducting fault current limiting(SFCL) system for a power distribution network. A Bi-2212 bulk SFCL element, which has the merits of large current capacity and high allowable electric field during fault of the power network, was selected as a candidate for our SFCL system. In this work, we experimentally investigated important characteristics of the 190 kVA Bi-2212 SFCL element in its application to the power grid e.g. DC voltage-current characteristic, AC loss, current limiting characteristic during fault, and so on. Some experimental data related to thermal and electromagnetic behaviors were also compared with the calculated ones based on numerical method. The results show that the total AC loss at rated current of the 22.9 kV/25 MVA SFCL system, consisting of one hundred thirty five 190 kVA SFCL elements, becomes likely 763 W, which is excessively large for commercialization. Numerically calculated temperature of the SFCL element in some sections is in good agreement with the measured one during fault. Local temperature distribution in the190 kVA SFCL element is greatly influenced by non-uniform critical current along the Bi-2212 bulk SFCL element, even if its non-uniformity becomes a few percentages.

펄스 모드로 작동하는 증기냉각 전류 도입선에 관한 연구 (Investigation on vapor-cooled current leads operating in pulse mode)

  • 인세환;정상권
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.66-72
    • /
    • 2002
  • This paper describes numerical modeling for thermal characteristic of vapor-cooled current leads under pulse operation. The transient thermal analysis considers the temperature difference between a helium gas (low and a copper lead and temperature dependent properties of helium gas, copper and stainless steel. This numerical modeling was compensated and validated by an experiment with commercially available 100 A vapor-cooled current leads. A proper overloading factor was suggested for the current leads under pulse operation through this modeling, which can significantly reduce heat input to a cryostat.

동기릴럭턴스전동기의 전류센서리스 제어 성능 고찰 (Considerations on the Performance of Current Sensorless Control of a Synchronous Reluctance Motor)

  • 신명호
    • 조명전기설비학회논문지
    • /
    • 제26권1호
    • /
    • pp.61-65
    • /
    • 2012
  • Some works about the current sensorless control of a synchronous reluctance motor have been presented. However, there is no analysis about the performance and the detuning effect of the current sensorless control. This paper presents the problems and the detuning effect of the current sensorless control of a synchronous reluctance motor by simulation results. In addition, torque limiter is proposed to limit the torque current within the torque limit.

실리콘 산화막에서 스트레스 전류의 두께 의존성 (Thickness Dependence of Stress Currents in Silicon Oxide)

  • 강창수;이형옥;이성배;서광일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.102-105
    • /
    • 1997
  • The thickness dependence of stress voltage oxide currents has been measured in oxides with thicknesses between 10nm and 80nm. The oxide currents were shown to be composed of stress current and transient current. The stress current was caused by trap assited tunneling through the oxide. The transient current was caused by the tunneling charging and discharging of the trap in the interfaces. The stress current was used to estimate to the limitations on oxide thicknesses. The transient current was used to the data retention in memory devices.

  • PDF