• Title/Summary/Keyword: On-column injection

Search Result 165, Processing Time 0.022 seconds

Dual Capillary Column System for the Qualitative Gas Chromatography: 2. Comparison between Splitless and On-Column Injection Modes

  • Kim, Kyoung-Rae;Kim, Jung-Han;Park, Hyoung-Kook;Oh, Chang-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.250-255
    • /
    • 1993
  • A dual capillary column system is described for the simultaneous analysis of a given sample and measurement of retention index (RI) and area ratio (AR) values of each peak on two capillary columns of different polarity, DB-5 & DB-1701 from a single injection. Both capillary columns were connected to either a splitless injector or an on-column injector via a deactivated fused-silica capillary tubing of 1 m length and a 'Y' splitter. Both injection modes allowed to measure RI and AR values with high reproducibility (<0.01% RSD) and high accuracy (<10% RE), respectively with the exception that the trace and high boiling solutes required the on-column mode for the accurate quantification and AR comparison. When the dual capillary column system in on-column injection mode was applied to the blind samples containing organic acids, each acid was positively indentified by the combined computer RI library search-AR comparison.

Injection Molding Experiments for Small Diameter Column (미소 원주의 사출 성형 실험)

  • 제태진;이응숙;김재구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.85-88
    • /
    • 1995
  • Recently, the micro mold maching techining technology is developed by means of the mechanical and high energy beam process. It is possible to make the micro structure mold with high aspect ratio by the LIGA technology. This mode is used for mass production of plastic parts by the micro injection molding method. In this study, we intend to research on the basic technology of micro injection molding. As the result, we developed the injection molding technology for small column plastic parts which diameter is 500 .mu. m and 200 .mu. m respectively with wbout aspect ratio 20.

  • PDF

Effects of Angled Injection on the Spray Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 분사각도 영향에 대한 분무특성 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Lee, Jang-Su;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.166-174
    • /
    • 2009
  • The liquid column trajectory and column breakup length characteristics have been experimentally studied in angled jets injected into subsonic crossflow. Pulsed shadowgraph photography and Planar Liquid Laser Induced Fluorescence measurements were used to determine the angled effects. And the main objectives of this research are to get a empirical formula of liquid column trajectory and breakup length with below the $90^{\circ}$ degree injection angle conditions, and were compared with previous results. It was also found that the empirical formula, which reversed injection conditions of air stream. As the result, This has been shown that liquid column trajectories and column breakup length were spatially dependent on various injection angle, normalized injector exit diameter, air-stream and fuel injection velocity. Furthermore, the empirical formula of liquid column trajectories and breakup length has been some different of drag coefficient results between normal angled injection and reversed injection in subsonic crossflow.

On the Optimum Modelization for a Spray Column Direct Contact Heat Exchanger (분사칼럼식 직접접촉 열교환기의 최적 모델링을 위한 연구)

  • Yoon, S.M.;Kang, Y.H.;Kim, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • The purpose of this study is to lay groundwork for a complete analysis of two component flow by analyzing a single component flow made of continuous fluid without dispersed phase. In order to achieve uniform velocity distributions which are desirable in designing an optimum spray column direct contact heat exchanger, the influence of injection nozzle orientation has been investigated for axial and radial injections. The results that radial injection ensures more uniform velocity distributions compared to the axial case. The flow characteristics in a spray column have been investigated with various L/D values and inlet velocities, the most uniform internal velocity distributions have been obtained for the case of L/D=10 and 0.1m/sec. In the present investigation, it is shown that radial injection method for the continuous flow is advantageous in obtaining desirable uniform velocity distributions in a spray column. It is also found that as the value of L/D increases and the inlet velocity decreases, the flow improves to be better uniform velocity distributions.

  • PDF

Seismic repair of reinforced concrete beam-column subassemblages of modern structures by epoxy injection technique

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.543-563
    • /
    • 2002
  • The use of the epoxy pressure injection technique to rehabilitate reinforced concrete beam-column joints damaged by strong earthquakes is investigated experimentally and analytically. Two one-half-scale exterior beam-column joint specimens were exposed to reverse cyclic loading similar to that generated from strong earthquake ground motion, resulting in damage. Both specimens were typical of new structures and incorporated full seismic details in current building codes. Thus the first specimen was designed according to Eurocode 2 and Eurocode 8 and the second specimen was designed according to ACI-318 (1995) and ACI-ASCE Committee 352 (1985). The specimens were then repaired with an epoxy pressure injection technique. The repaired specimens were subjected to the same displacement history as that imposed on the original specimens. The results indicate that the epoxy pressure injection technique was effective in restoring the strength, stiffness and energy dissipation capacity of specimens representing a modem design.

An Experimental Study on the Trajectory Characteristics of Liquid Jet with Canted Injection Angles in Crossflow (수직분사제트에서 다양한 분사각도의 분무궤적 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • The liquid column and spray trajectory have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle were varied to provide of jet operation conditions. The Pulsed Shadowgraph Photography and Planar Liquid Laser Induced Fluorescence technique was used to determine the injection characteristics in a subsonic crossflow of air. And the mainly objectives of this research was to get a empirical formula of liquid column and spray region trajectory with forward and reversed injection of air stream. As the result, This research has been shown that each trajectories were spatially dependent on air-stream velocity, fuel injection velocity, various injection angle, and normalized injector exit diameter. Furthermore, the empirical formula of liquid column trajectories has been some different of drag coefficient results between forward and reversed angled injection.

A Numerical Study on Heat Transfer Characteristics in a Spray Column Direct Contact Heat Exchanger (분사칼럼식 직접접촉열교환기의 열전달특성에 관한 수치적 연구)

  • 강용혁;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.735-744
    • /
    • 2000
  • In order to define the heat transfer characteristics in a spray column direct contact heat exchanger, the development of a multidimensional numerical model and computational algorithm is essential to analyze the inherent multidimensional characteristics of a direct contact heat exchanger. In the present study, it has been carried out numerical calculations using a two-dimensional model for operation of a direct contact heat exchanger. Such operational and system parameters as the injection velocity, void fraction, aspect ratio and injection temperature of each fluid are examined thoroughly to assess their influence on the performance of a spray column. Analyzed results has shown that our two-dimensional model predicts the heat transfer phenomena well in a spray column.

  • PDF

Gas Chromatographic Determination of Benfuresate through On-column Injection (On-column Injector를 이용한 benfuresate의 분석)

  • Kwon, Jin-Wook;Kim, Kyun;Kim, Yong-Hwa
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.2
    • /
    • pp.141-145
    • /
    • 2002
  • Benfuresate의 잔류분석을 위해 GC-FPD(S-mode)를 이용하여 분석조건을 설정 중 열적 불안정으로 인해 열분해 산물과 모 화합물이 혼재됨이 확인되었다. 가스크로마토그라프를 이용한 열분해의 주된 요인은 주입구의 온도와 주입구내의 기화 정도인 것으로 판단되었으며, 주입구를 Chauhan과 Debre 가 고안한 on-column으로 교체 후 분석한 결과 분해산물이 없는 단일 봉우리의 크로마토그램을 얻을 수 있었고, 절대량으로 0.6-4ng의 정량 범위 내에서 유의성 높은 검량선을 얻을 수 있는 주입구 온도는 20$0^{\circ}C$였다.

Experimental Study on the Characteristics of Micro Jet Flow Using Digital Microscopic Holography (디지털 현미경 홀로그래피 기법을 이용한 마이크로 액체 제트 유동에 관한 실험적 연구)

  • Lee, Haneol;Lee, Jaiho;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.48-53
    • /
    • 2018
  • In this study, the effect of injection pressure on the column diameter and droplet velocity of liquid jet with the weakly turbulent Rayleigh-like breakup mode is experimentally studied using digital microscopic holography (DMH). The injection nozzle has the diameter of $50{\mu}m$ and injection pressure is varied from 0.1 to 0.4 MPa. When the micro liquid jet is injected into still air, the double-pulsed holograms was recorded on a CCD sensor and numerically reconstructed in order to obtain well focused images. In this study, the liquid column diameter from $50{\mu}m$ orifice nozzle is shown to be changed slightly but the droplet velocity is increased proportionally as the injection pressure is increased.

Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows (아음속 유동장에 수직분사시 오리피스 내부유동 효과에 대한 연구)

  • 김정훈;안규복;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.28-39
    • /
    • 2003
  • Effects of the orifice internal flow such as cavitation and hydraulic flip on transverse injection into subsonic crossflows have been studied. The liquid column breakup length and the liquid column trajectory were measured by changing the orifice diameter (d), the orifice length/orifice diameter (L/d), the injection pressure and the shapes (sharp and round) of orifice entrance, and were compared with previous results. It is found that cavitation bubbles, which occur inside the sharp-edged orifice, make the liquid jet very turbulent and especially in the orifices with L/d = 5 hydraulic flip appear as cavitation bubbles are emitted from the orifice. The breakup length is shorter as cavitation bubbles grows and hydraulic flip appears. However, the liquid column trajectories normalized by the effective diameter and the effective momentum ratio have a similar tendency irrespective of cavitation and hydraulic flip.