• Title/Summary/Keyword: On-Chip Networks

Search Result 100, Processing Time 0.022 seconds

A software-controlled bandwidth allocation scheme for multiple router on-chip-networks

  • Bui, Phan-Duy;Lee, Chanho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1203-1207
    • /
    • 2019
  • As the number of IP cores has been increasing in a System-on-Chip (SoC), multiple routers are included in on-chip-networks. Each router has its own arbitration policy and it is difficult to obtain a desired arbitration result by combining multiple routers. Allocating desired bandwidths to the ports across the routers is more difficult. In this paper, a guaranteed bandwidth allocation scheme using an IP-level QoS control is proposed to overcome the limitations of existing local arbitration policies. Each IP can control the priority of a packet depending on the data communication requirement within the allocated bandwidth. The experimental results show that the proposed mechanism guarantees for IPs to utilize the allocated bandwidth in multiple router on-chip-networks. The maximum error rate of bandwidth allocation of the proposed scheme is only 1.9%.

A Concurrent Testing of DRAMs Utilizing On-Chip Networks (온칩네트워크를 활용한 DRAM 동시 테스트 기법)

  • Lee, Changjin;Nam, Jonghyun;Ahn, Jin-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.82-87
    • /
    • 2020
  • In this paper, we introduce the novel idea to improve the B/W usage efficiency of on-chip networks used for TAM to test multiple DRAMs. In order to avoid the local bottleneck of test packets caused by an ATE, we make test patterns using microcode-based instructions within ATE and adopt a test bus to transmit test responses from DRAM DFT (Design for Testability) called Test Generator (TG) to ATE. The proposed test platform will contribute to increasing the test economics of memory IC industry.

Color Filter Array Interpolation Method Using Neural Networks (신경망을 이용한 Color Filter Array 보간 기법)

  • 고진욱;이철희
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.242-245
    • /
    • 2000
  • In this paper, we present a color interpolation technique based on artificial neural networks for a single-chip CCD (charge-coupled device) camera with a Bayer color filter array (CFA). Single-chip digital cameras use a color filter array and an interpolation method in order to regenerate high quality color images from sparsely sampled images. We applied 3-layer feedforward neural networks in order to interpolate missing pixel from surrounding pixels. And we compared the proposed method with conventional interpolation methods such as the proposed interpolation algorithm based on neural networks provides a better performance than the conventional interpolation algorithms.

  • PDF

Design Space Exploration for NoC-Style Bus Networks

  • Kim, Jin-Sung;Lee, Jaesung
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1240-1249
    • /
    • 2016
  • With the number of IP cores in a multicore system-on-chip increasing to up to tens or hundreds, the role of on-chip interconnection networks is vital. We propose a networks-on-chip-style bus network as a compromise and redefine the exploration problem to find the best IP tiling patterns and communication path combinations. Before solving the problem, we estimate the time complexity and validate the infeasibility of the solution. To reduce the time complexity, we propose two fast exploration algorithms and develop a program to implement these algorithms. The program is executed for several experiments, and the exploration time is reduced to approximately 1/22 and 7/1,200 at the first and second steps of the exploration process, respectively. However, as a trade-off for the time saving, the time cost (TC) of the searched architecture is increased to up to 4.7% and 11.2%, respectively, at each step compared with that of the architecture obtained through full-case exploration. The reduction ratio can be decreased to 1/4,000 by simultaneously applying both the algorithms even though the resulting TC is increased to up to 13.1% when compared with that obtained through full-case exploration.

Mapping and Scheduling for Circuit-Switched Network-on-Chip Architecture

  • Wu, Chia-Ming;Chi, Hsin-Chou;Chang, Ruay-Shiung
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.111-120
    • /
    • 2009
  • Network-on-chip (NoC) architecture provides a highper-formance communication infrastructure for system-on-chip designs. Circuit-switched networks guarantee transmission latency and throughput; hence, they are suitable for NoC architecture with real-time traffic. In this paper, we propose an efficient integrated scheme which automatically maps application tasks onto NoC tiles, establishes communication circuits, and allocates a proper bandwidth for each circuit. Simulation results show that the average waiting times of packets in a switch in $6{\times}6$6, $8{\times}8$, and $10{\times}10$ mesh NoC networks are 0.59, 0.62, and 0.61, respectively. The latency of circuits is significantly decreased. Furthermore, the buffer of a switch in NoC only needs to accommodate the data of one time slot. The cost of the switch in the circuit-switched network can be reduced using our scheme. Our design provides an effective solution for a critical step in NoC design.

  • PDF

On-chip-network Protocol for Efficient Network Utilization (효율적인 네트워크 사용을 위한 온 칩 네트워크 프로토콜)

  • Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.86-93
    • /
    • 2010
  • A system-on-chip (SoC) includes more functions and requires rapidly increased data bandwidth as the development of semiconductor process technology and SoC design methodology. As a result, the data bandwidth of on-chip-networks in SoCs becomes a key factor of the system performance, and the research on the on-chip-network is performed actively. Either AXI or OCP is considered to a substitute of the AHB which has been the most popular on-chip-network. However, they have much increased number of signal wires, which make it difficult to design the interface logic and the network hardware. The compatibility of the protocols with other protocols is not so good. In this paper, we propose a new interface protocol for on-chip-networks to improve the problems mentioned above. The proposed protocol uses less number of signal wires than that of the AHB and considers the compatibility with other interface protocols such as the AXI. According the analysis results, the performance of the proposed protocol per wire is much better than that of the AXI although the absolute performance is slightly inferior.

Design of a Neurochip's Core with on-chip Learning Capability on Hardware with Minimal Global Control (On-chip 학습기능을 구현한 최소 광역 제어 신경회로망 칩의 코어 설계)

  • 배인호;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.161-172
    • /
    • 1994
  • This paper describes the design of a neurochip with on-chip learning capability in hardware with multiple processing elements. A digital architecture is adopted because its flexiblity and accuracy is advantageous for simulating the various application systems. The proposed chip consists of several processing elements to fit the large computation of neural networks, and has on-chip learning capability based on error back-propagation algorithm. It also minimizes the number of blobal control signals for processing elements. The modularity of the system makes it possible to buil various kinds of boards to match the expected range of applications.

  • PDF

Voltage Optimization of Power Delivery Networks through Power Bump and TSV Placement in 3D ICs

  • Jang, Cheoljon;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.643-653
    • /
    • 2014
  • To reduce interconnect delay and power consumption while improving chip performance, a three-dimensional integrated circuit (3D IC) has been developed with die-stacking and through-silicon via (TSV) techniques. The power supply problem is one of the essential challenges in 3D IC design because IR-drop caused by insufficient supply voltage in a 3D chip reduces the chip performance. In particular, power bumps and TSVs are placed to minimize IR-drop in a 3D power delivery network. In this paper, we propose a design methodology for 3D power delivery networks to minimize the number of power bumps and TSVs with optimum mesh structure and distribute voltage variation more uniformly by shifting the locations of power bumps and TSVs while satisfying IR-drop constraint. Simulation results show that our method can reduce the voltage variation by 29.7% on average while reducing the number of power bumps and TSVs by 76.2% and 15.4%, respectively.

A Backpropagation Learning Algorithm for pRAM Networks (pRAM회로망을 위한 역전파 학습 알고리즘)

  • 완재희;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.107-114
    • /
    • 1994
  • Hardware implementation of the on-chip learning artificial neural networks is important for real-time processing. A pRAM model is based on probabilistic firing of a biological neuron and can be implemented in the VLSI circuit with learning capability. We derive a backpropagation learning algorithm for the pRAM networks and present its circuit implementation with stochastic computation. The simulation results confirm the good convergence of the learning algorithm for the pRAM networks.

  • PDF

Design of CNN Chip with Annealing Capability (어닐링 기능을 갖는 셀룰러 신경망 칩 설계)

  • 유성환;전흥우
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.11
    • /
    • pp.46-54
    • /
    • 1999
  • The output values of cellular neural networks would have errors because they can be stabilized at local minimums depending on the initial states of each cell. So, in this paper, we design the $6\times6$cellular neural networks with annealing capability which guarantees that the outputs reaches the global minimum to have correct output values independent of the initial states of each cell. This chip is designed using a $0.8\mu\textrm{m}$ CMOS technology The designed chip contains about 15,000 transistors and the chip size is about $2.89\times2.89\textrm{mm}^2$. The simulation results of edge extraction and hole filling using the designed circuit show that the outputs values would have errors in un-annealed case, but not in annealed case. In the simulation, the annealing time of $3\musec$ is employed.

  • PDF