• Title/Summary/Keyword: Oil free

Search Result 689, Processing Time 0.028 seconds

The Conversion of Jatropha Oil into Biodiesel Using Acid / Alkali Catalysts (산 / 알칼리 촉매를 사용한 자트로파유의 바이오디젤화)

  • Hyun, Young-Jin;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.275-281
    • /
    • 2008
  • The esterification of free fatty acid in Jatropha oil added by propylene glycol using p-TSA catalyst was done, and then the transesterification of Jatropha oil added by 1.0vol% GMS as an emulsifier using TMAH, and mixed catalyst(60wt%-TMAH+ 40wt%-KOH) respectively was followed at $60^{\circ}C$. The esterification conversion at the 1:8 molar ratio of free fatty acid to methanol using 8.0wt% p-TSA was 94.7% within 60min. The overall conversion at the 1:8 molar ratio of Jatropha oil to methanol and $60^{\circ}C$ using mixed catalyst was 95.4%. The kinematic viscosity of Biodiesel using TMAH and mixed catalyst in 24h met the ASTM D-6751 above $30^{\circ}C$, and showed a little more than its criterion.

Influence of pH, Emulsifier Concentration, and Homogenization Condition on the Production of Stable Oil-in-Water Emulsion Droplets Coated with Fish Gelatin

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.999-1005
    • /
    • 2007
  • An oil-in-water (O/W) emulsion [20 wt% com oil, 0.5-6.0 wt% fish gelatin (FG), pH 3.0] was produced by high pressure homogenization, and the influence of pH, protein concentration, and homogenization condition on the formation of FG-stabilized emulsions was assessed by measuring particle size distribution, electrical charge, creaming stability, microstructure, and free FG concentration in the emulsions. Optical microscopy indicated that there were some large droplets ($d>10\;{\mu}m$) in all FG-emulsions, nevertheless, the amount of large droplets tended to decrease with increasing FG concentration. More than 90% of FG was present free in the continuous phase of the emulsions. To facilitate droplet disruption and prevent droplet coalescence within the homogenizer, homogenization time was adjusted in O/W emulsions stabilized by 2.0 or 4.0 wt% FG. However, the increase in the number of pass rather promoted droplet coalescence. This study has shown that the FG may have some limited use as a protein emulsifier in O/W emulsions.

An Application of Surface Plasmon Resonance to Evaluation of Quality Parameters of Soybean Oil during Frying

  • Gil, Bo-Gim;Chang, Young-Ki;Cho, Yong-Jin
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.404-408
    • /
    • 2006
  • Feasibility of surface plasmon resonance (SPR) method to evaluate soybean frying oil quality was evaluated. Free fatty acid value, p-anisidine value, conjugated dienoic acid content, conjugated trienoic acid content, peroxide value, iodine value, total polar compound (TPC), ratio of unsaturated fatty acid to saturated fatty acid, refractive index, dielectric constant, smoking point, and L, a, and b of Hunter color system were selected as parameters related to conventional evaluation of soybean frying oil quality. SPR scale mapped with conventional quality parameters well described free fatty acid value, conjugated dienoic acid content, dielectric constant, TPC, and b of Hunter color system, as shown by correlation and linear regression analyses.

Addition Effect of Seed-associated or Free Linseed Oil on the Formation of cis-9, trans-11 Conjugated Linoleic Acid and Octadecenoic Acid by Ruminal Bacteria In Vitro

  • Wang, J.H.;Song, M.K.;Son, Y.S.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1115-1120
    • /
    • 2002
  • The effects of seed-associated or free linseed oil on fermentation characteristics and long-chain unsaturated fatty acids composition, especially the formation of conjugated linoleic acid (CLA) and octadecenoic acid (trans-11 $C_{18:1}$, $t-C_{18:1}$) by mixed ruminal bacteria were examined in vitro. Concentrate (1% of culture solution, w/v, as-fed basis) with ground linseed (0.6% of culture solution, w/v, DM basis) or linseed oil as absorbed onto ground alfalfa hay was added to 600 ml mixed solution consisting of strained rumen fluid and artificial saliva at the ratio of 1:1 in a glass culture jar. The culture jar was covered with a glass lid with stirrer, and placed into a water-bath ($39^{\circ}C$) and incubated anaerobically up to 24 h. Seed-associated or free linseed oil did not significantly affect the pH and ammonia concentration in the culture solution. Molar percent of acetate tended to increase while that of propionate decreased with the addition of free oil treatment throughout the incubation. Differences in bacterial number were relatively small, regardless of the form of supplements. Decreasing trends in the compositions of linoleic acid ($C_{18:2}$) and linolenic acid ($C_{18:3}$) but increasing trends of stearic acid ($C_{18:0}$), $t-C_{18:1}$ and CLA compositions were found from culture contents up to 12h incubation when incubated with both ground linseed and linseed oil. The compositions of $C_{18:0}$, $C_{18:2}$ and $C_{18:3}$ were greater but those of oleic acid ($C_{18:1}$), $t-C_{18:1}$ and CLA were smaller in a culture solution containing ground linseed than those containing linseed oil. The ratio of $t-C_{18:1}$ to CLA was lower in the culture solutions containing linseed oil up to 12h incubations as compared to those containing ground linseed.

Effect of Supplementing Sheep with Sunflower Acid Oil or its Calcium Soap on Nutrient Utilization

  • Alexander, G.;Rao, Z. Prabhakara;Prasad, J. Rama
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1288-1293
    • /
    • 2002
  • Four adult rams ($22.25{\pm}0.90kg$) were used in a $4{\times}4$ latin square design to evaluate the rations without ($T_1$) or with supplementation of sunflower acid oil at 5 ($T_2$), 10 ($T_3$) or calcium soap at 10% of dietary DM ($T_4$) on nutrient digestibility and balances of nitrogen, calcium and phosphorus. The basal ration contained 60 parts Brazilian napier grass hay and 40 parts concentrate mixture. The DM, CF, NDF and ADF digestibilities and nitrogen retention (g/d) decreased (p<0.01) by inclusion of sunflower acid oil at 5% of dietary DM. In addition, depression (p<0.01) in digestibilities of CP, nitrogen free extract (NFE), cellulose, hemicellulose, retention of calcium and phosphorus (g/d) were also observed with increasing the level of sunflower acid oil to 10% of dietary DM. The EE digestibility, total digestible nutrients (TDN) content and calcium retention (g/d) were significantly higher (p<0.01) for ration supplemented with calcium soap. It is concluded that sunflower acid oil supplementation in free form as low as 5% of dietary DM is deleterious to fibre digestion in sheep while as calcium soap, it can be fed up to 10% of dietary DM as an energy source without any adverse effect.

A study on treatment of emulsified oil waste water in vessels by electrochemical treatment system (전기화학적 처리장치에 의한 유화된 선저폐수의 처리에 관한 연구)

  • Kwon K. S.;Jeong H. J.;Lee B. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • Discharging untreated bilge to the ocean is a cause of marine pollution. In general, bilge water contains free and/or emulsified forms of oil. Free form of oil can easily be separated by gravimetric flotation and/or proper filtration processes. However, those simple physicochemical processes could not separate emulsified oil without adding proper chemicals. Electrolytic flotation is one of promising technologies able to fulfill the effluent standard requirement, which is below 15 ppm of oil content. In this research, Electrochemical process consisting of electrochemical flotation basin was studied for the treatment of emulsified oil. In order to estimate, the effectiveness of oil separation equipment influent concentration of oil and HRT(Hydraulic retention time) were considered. Also, lab-scale electrochemical process was designed and operated in the condition of various HRT, current density, and electrode gap. Through the research, following results were obtained. From the experiment of bench scale electrochemical treatment process, it was demonstrated that the emulsified oil was treated effectively and the removal efficiency of emulsified oil from wastewater was increased with HRT and current density.

  • PDF

Effect of Oil Extraction Methods on Sterol Composition of Sesame Oil (채유방법(採油方法)이 참기름의 Sterol조성(組成)에 미치는 영향(影響))

  • Choi, Sang-Do;Kim, Hyoung-Kab
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.4
    • /
    • pp.365-369
    • /
    • 1985
  • In order to examine the effect of oil extraction methods on the characteristics of sesame oil, the unsaponifiable matters, fractionation sterol pattern and sterol compositions of the each fraction of the oil were compared in the oil extracted by the three different extraction methods, that is, pressure extraction of roasted seed (RTP), acetone extraction of roasted seed(RTE) and acetone extraction of raw seed(RWE). The amount of unsaponifiable in RWE oil was silghly higher as 31.8mg per 1mg drying oil than that in RTP oil of 26.1mg. Sesame oils from three different extraction methods were found to contain $0.26{\sim}0.32%$ free, $0.23{\sim}0.42%$ bound, and $0.49{\sim}0.64%$ total sterol. The content of free sterol in RWE oil was higher as 0.32% than that in RTE and RTP oil of 0.26%, and that of sterylglycoside in RTE oil was lower as 0.12% than that in RTP and RWE oil of 0.23%, but that of sterylester was a little difference. The unsaponifiable matter from fractionation sterol in sesame oil by three different extraction methods was fractionated into less polor compounds, 4,4-dimethyl-, 4-monomethyl-, 4-desmethylsterol fraction by thinlayer chromatography, and sterol composition of 4-desmethylsterol fraction was analyzed by gas liquid chromatography. The major sterols were campe-, stigma-, sito-, and ${\Delta}^5-avenasterol$, but, specially, unknown sterol(RRT:1.35) was found as $23.5{\sim}26.4%$ in total sterols, The content of sitosterol, ${\Delta}^5-avenasterol$, campesterol and stigmasterol were $59.9{\sim}60.3%,\;8.1{\sim}11%,\;16.1{\sim}18.4%,\;11.6{\sim}12.8%$ of the total sterol in free sterol fraction, $37.3{\sim}46.9,\;11.6{\sim}14.2,\;6.6{\sim}9.0$, and $6.1{\sim}8.0%$ of the total sterol in sterylglycoside fraction, $55.9{\sim}59.9,\;9.2{\sim}11.4,\;17.1{\sim}18.9$, and $11.8{\sim}13.7%$ of the total sterol in sterylester fraction, and $39.3{\sim}42.9,\;13.0{\sim}17.2,\;9.1{\sim}11.0$ and $7.4{\sim}11.5%$ of the total sterol in total sterol fraction. But the effect of oil extraction methods on sterol composition in sesame oil were hardly found.

  • PDF

Effects of Free Alkali and Moisture on Sucrose Polyesters Synthesis (유리 알카리 및 수분이 sucrose polyesters 합성에 미치는 영향)

  • Chung, Ha-Yull;Kim, Suk-Ju;Yoon, Sung-Woo;Yoon, Hee-Nam;Kong, Un-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.247-250
    • /
    • 1992
  • Effects of free alkali and moisture on sucrose polyesters (SPE)-possible non calorie fat substitute-synthesis were investigated using a model system composed of sodium oleate, sucrose, potassium carbonate and methyl oleate. Trace amounts of free alkali in sodium oleate were found to interefere with SPE synthesis. When free alkali content in sodium oleate was varied gradually from 0% to 5%(w/w), the yield of SPE production was reduced from 92% to 45.5%. The moisture absorbed in sodium oleate, sucrose and potassium carbonate during storage also interefered with SPE synthesis. The yield (92%) of SPE production with dried ($105^{\circ}C$.6 hrs) reactants and catalysts was higher than that (89%) of SPE production with non-dried. Soybean oil fatty acid sodium soaps (FASS) not containing free alkali could be manufactured with slightly less than molar ratio of sodium hydroxide to soybean oil fatty acid methyl esters (FAME). Practically, 91.7% yield of soybean oil SPE production was outcomed by minimizing free alkali and moisture which were remaining in sucrose, potassium carbonate, soybean oil FASS and soybean oil FAME.

  • PDF

Studies on the Lipid Classes of Nicotiana tabacum L. Seed Oil

  • Waheed, Amran;Mahmud, Shahid;Javed, Muhammad Akhtar;Saleem, Muhammad
    • Natural Product Sciences
    • /
    • v.7 no.4
    • /
    • pp.110-113
    • /
    • 2001
  • The lipid classes constituents; hydrocarbons, wax esters, sterol esters, triacylglycerols, free fatty acids, 1,3-diacylglycerols, 1,2-diacylglycerols, free sterols, 2-monoacylglycerols, 1-monoacylglycerols, phosphatidylethanolamines, phosphatidylcholines, lysophosphatidylethanolamines and phosphatidylinositols of Nicotiana tabacum L. seeds oil were investigated by thin layer and gas chromatography. Palmitic, oleic and linoleic acids were the major components in all lipid classes studied.

  • PDF

Esterification and Trans-esterification Reaction of Fish Oil for Bio-diesel Production (바이오디젤 생산을 위한 어유의 에스테르화 및 전이에스테르화 반응)

  • Lee, Young-Jae;Kim, Deog-Keun;Lee, Jin-Suk;Park, Soon-Chul;Lee, Jin-Won
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.313-319
    • /
    • 2013
  • To produce biodiesel efficiently from fish oil containing 4% free fatty acid, esterification and trans-esterification were carried out with Vietnam catfish oil, which was kindly provided from GS-bio company. Heterogeneous solid acid catalysts such as Amberlyst-15 and Amberlyst BD-20 and sulfuric acid as homogeneous acid catalyst were used for the esterification of free fatty acids in the fish oil. Sulfuric acid showed the highest removal efficiency of free fatty acid and the shortest reaction time among three acid catalysts. The base catalysts for trans-esterification such as KOH, $NaOCH_3$ and NaOH were compared with each other and KOH was determined to be the best transesterification catalyst. Some solid material, which assumed to be saponified product from glycerol and biodiesel, were observed to form in the fish oil biodiesel when using $NaOCH_3$ and NaOH as the transesterification catalyst. The initial acid value of fish oil was proven to have a negative effect on biodiesel conversion. Of the three catalysts, KOH catalyst transesterification was shown to have high content of FAME and the optimal ratio of methanol/oil ratio was identified to be 9:1.