DOI QR코드

DOI QR Code

Esterification and Trans-esterification Reaction of Fish Oil for Bio-diesel Production

바이오디젤 생산을 위한 어유의 에스테르화 및 전이에스테르화 반응

  • Lee, Young-Jae (Bio-energy Research Center, Korea Institute of Energy Research) ;
  • Kim, Deog-Keun (Bio-energy Research Center, Korea Institute of Energy Research) ;
  • Lee, Jin-Suk (Bio-energy Research Center, Korea Institute of Energy Research) ;
  • Park, Soon-Chul (Bio-energy Research Center, Korea Institute of Energy Research) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 이영재 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 김덕근 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 이진석 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 박순철 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 이진원 (서강대학교 화공생명공학과)
  • Received : 2013.05.22
  • Accepted : 2013.06.27
  • Published : 2013.09.30

Abstract

To produce biodiesel efficiently from fish oil containing 4% free fatty acid, esterification and trans-esterification were carried out with Vietnam catfish oil, which was kindly provided from GS-bio company. Heterogeneous solid acid catalysts such as Amberlyst-15 and Amberlyst BD-20 and sulfuric acid as homogeneous acid catalyst were used for the esterification of free fatty acids in the fish oil. Sulfuric acid showed the highest removal efficiency of free fatty acid and the shortest reaction time among three acid catalysts. The base catalysts for trans-esterification such as KOH, $NaOCH_3$ and NaOH were compared with each other and KOH was determined to be the best transesterification catalyst. Some solid material, which assumed to be saponified product from glycerol and biodiesel, were observed to form in the fish oil biodiesel when using $NaOCH_3$ and NaOH as the transesterification catalyst. The initial acid value of fish oil was proven to have a negative effect on biodiesel conversion. Of the three catalysts, KOH catalyst transesterification was shown to have high content of FAME and the optimal ratio of methanol/oil ratio was identified to be 9:1.

본 연구에서는 유리지방산을 4% 포함한 어유로부터 바이오디젤을 제조하기 위해 산촉매를 이용한 에스테르화 반응과 염기촉매를 이용한 전이에스테르화 반응을 수행하였다. 실험에 사용된 어유는 GS바이오사(社)로부터 공급받은 베트남산 메기(catfish)에서 추출된 오일을 사용하였다. 에스테르화 반응에 대하여 불균질계 고체 산촉매로 Amberlyst-15와 Amberlyst BD-20을 이용하였으며 균질계 산촉매로 황산을 사용하였다. 에스테르화 반응에 의한 유리지방산 제거율이 가장 높은 촉매는 황산으로 나타났으며 반응시간도 가장 짧게 나타났다. 3종의 염기촉매 KOH, $NaOCH_3$, NaOH를 이용하여 어유의 전이에스테르화 반응 특성을 조사한 결과 KOH 촉매가 가장 적합한 것으로 나타났다. $NaOCH_3$와 NaOH 촉매의 경우 전이에스테르화 반응시 글리세롤과 바이오디젤이 일정한 조건에서 고형화 현상이 관찰되었으며 비누화 반응이 진행된 것으로 판단된다. KOH 촉매를 이용하여 초기 원료 산가와 메탄올 투입량이 전이에스테르화 반응에 미치는 영향을 조사한 결과 초기 원료오일의 산가는 낮을수록 좋았으며 메탄올과 오일의 몰비는 9:1이 적합한 것으로 도출되었다.

Keywords

References

  1. Huang, G.-H., Chen, F., Wei, D., Zhang, X,-W., and Chen, G., "Biodiesel Production by Microalgal Biotechnology," Appl. Energy, 87, 38-46 (2010). https://doi.org/10.1016/j.apenergy.2009.06.016
  2. Choi, J.-D., Kim, D,-K., Park, J,-Y., Rhee, Y,-W., and Lee, J,-S., "Optimization of Esterification of Jatropha Oil by Amberlyst-15 and Biodiesel Production," Korean Chem. Eng. Res., 46(1), 194-199 (2008).
  3. Gerpen, J.-V., "Biodiesel Processing and Production," Fuel Proc. Technol., 86, 1097-1107 (2005). https://doi.org/10.1016/j.fuproc.2004.11.005
  4. Graboski, M. S., and McCormick, R. L., "Combusion of Fat and Vegetable Oil Derived Fuels in Diesel Engines," Prog. Energy Combust. Sci., 24, 125-164 (1998). https://doi.org/10.1016/S0360-1285(97)00034-8
  5. Cunha, M. E., Krause, L.-C., Moraes, M. S.-A., Faccini, C.-S., Jacques, R.-A., Almeida, S.-R., Rodrigues, M. R.-A., and Caramao, E.-B., "Beef Tallow Biodiesel Produced in a Pilot Scale," Fuel Proc. Technol., 90 570-575 (2009). https://doi.org/10.1016/j.fuproc.2009.01.001
  6. Kim, Y.-J., Lee, S.-H., Hong, S.-K., Kim, M., and Park, S.-J., "Enzyme Activity of Lipase Immobilized Non-woven Fabric for Biodiesel Production," Korean Chem. Eng. Res., 48(1), 121-127 (2010).
  7. Ataya, F., Dube, M.-A., and Terman, M., "Acid-catalyzed Transesteification of Canola Oil to Biodiesel under Single- and Two-phase Reaction Conditions," Energy Fuels, 21, 2450-2459 (2007). https://doi.org/10.1021/ef0701440
  8. Balat, M., "Potential Alternatives to Edible Oils for Biodiesel Production-A Review of Current Work," Energy Conversion Manage., 52 1479-1492 (2011). https://doi.org/10.1016/j.enconman.2010.10.011
  9. Chiou, B. S., El-Mashad, H. M., Avena-Bustillos, R. J., Dunn, R. O., Bechtel, P. J., McHugh, T. H., Imam, S. H., Glenn, G. M., Orts, W. J., and Zhang, R., "Biodiesel from Waste Salmon Oil," ASABE., 51(3), 797-802 (2008). https://doi.org/10.13031/2013.24517
  10. Lin, C.-Y., and Li, R.-J., "Engine Performance and Emission Characteristics of Marine Fish-oil Biodiesel Produced from the Discarded Parts of Marine Fish," Fuel Proc. Technol., 90, 883-888 (2009). https://doi.org/10.1016/j.fuproc.2009.04.009
  11. Kim, D.-K., Choi, J,-D., Park, J.-Y., Lee, J,-S., Park, S.-B., and Park, S.-C., "Optimization of Pre-treatment of Tropical Crop Oil by Sulfuric Acid and Bio-diesel Production," Korean Chem. Eng. Res., 47(6), 762-767 (2009).
  12. Kim, S.-M., Kim, D.-K., Lee, J,-S., Park, S.-C., and Rhee, Y.-W., "Esterification Reaction Of Animal Fat for Bio-diesel Production," Clean Tech., 18(1), 102-110 (2012). https://doi.org/10.7464/ksct.2012.18.1.102
  13. Korea Institute of Energy Research., "A process Develoment of Biodiesel Production from Used Frying Oil Using Chemical Catalyst," Resouce Recycling R&D Program, 2A-B-3-1, 96-111 (2003).
  14. Korea Institute of Energy Research., "Process Develoment for Production of Biodiesel from Waste Fats," Industrial Waste Recycling R&D Program, A-B-2-1, 53-56 (2006).
  15. AOCS Official Method AC 3d-63, "Acid Value," Official Method and Recommended Practices of the AOCS, Fifth Edn. AOCS. Champaign, Illinois (20003).
  16. Gustone, F. D., "Fatty Acid and Lipid Chemistry," Chapman & Hall, UK, 1996, p. 207.
  17. CEN, EN 14103, Fat and Oil Derivatives-fatty Acid Methyl Esters (FAME)-Determination of Ester and Linoleic Acid Methyl Esters Contents, (2001).
  18. CEN, EN 14105, Fat and Oil Derivatives-fatty Acid Methyl Esters (FAME)-Determination of Free and Total Glycerol and Mono-, Di-, Triglyceride Contents, (2001).
  19. CEN, EN 14112, Fat and Oil Derivatives-fatty Acid Methyl Esters (FAME)-Determination of Oxidation Stability, (2003).
  20. Ramos, M.-J., Femandez, C.-M., Casas, A., Rodriguez, L., and Perez, A., "Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties," Bioresour. Technol., 100, 261-268 (2009). https://doi.org/10.1016/j.biortech.2008.06.039