• 제목/요약/키워드: Offset Voltage Compensation

검색결과 42건 처리시간 0.024초

정밀 계측 신호처리용 A/D 변환 구현 (An A/D Conversion of Signal Conditioning for Precision Instrumentation Use)

  • 박찬원;주용규
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.133-139
    • /
    • 2002
  • In precision instrumentation system, an A/D conversion of signal conditioning has been always suffered from some problems ; offset and drift voltage with environmental situation. This paper suggests a method of reducing the offset voltage and the drift error from the A/D conversion hardware using analog signal switching technique with specific operational amplifier circuits. Also, we have designed a hardware active filter and a software digital filter with Auto Zero Tracking algorithm for better dignal process of the our proposed weighing system. Software technique was performed to obtain the stable data from A/D converter. As a result of our experimental works, the proposed system is expected to be used in the industrial field where a high precision measurement is required.

  • PDF

단상 계통연계형 인버터의 SRF-PLL 옵셋 오차로 인한 전류 맥동 저감에 관한 연구 (A Study on Current Ripple Reduction Due to Offset Error in SRF-PLL for Single-phase Grid-connected Inverters)

  • 황선환;황영기;권순걸
    • 조명전기설비학회논문지
    • /
    • 제28권11호
    • /
    • pp.68-76
    • /
    • 2014
  • This paper presents an offset error compensation algorithm for the accurate phase angle of the grid voltage in single-phase grid-connected inverters. The offset error generated from the grid voltage measurement process cause the fundamental harmonic component with grid frequency in the synchronous reference frame phase lock loop (PLL). As a result, the grid angle is distorted and the power quality in power systems is degraded. In addition, the dq-axis currents in the synchronous reference frame and phase current have the dc component, first and second order ripples compared with the grid frequency under the distorted grid angle. In this paper, the effects of the offset and scaling errors are analyzed based on the synchronous reference frame PLL. Particularly, the offset error can be estimated from the integrator output of the synchronous reference frame PLL and compensated by using proportional-integral controller. Moreover, the RMS (Root Mean Square) function is proposed to detect the offset error component. The effectiveness of the proposed algorithm is verified through simulation and experiment results.

보상용 브릿지를 이용한 압저항형 압력센서의 온도보상 방법 (Temperature compensation method of piezoresistive pressure sensor using compensating bridge)

  • 손원소;이재곤;최시영
    • 전자공학회논문지D
    • /
    • 제35D권5호
    • /
    • pp.63-68
    • /
    • 1998
  • The absolute pressure sensor using SDB wafer has been fabricated. the structure of the sensor consists of two wheatstone bridges and a diaphragm. One of the two wheatstone bridges is located on the edge of diaphragm, and the other is located on the center of diaphragm. The diaphragm cavity is sealted in vacuum (~10$^{5}$ Torr) to reduce the effect of temperature due to the vapor in the cavity on the sensitivity of pressure sensor. This is the minor method of temperature compensation method. In this experiment the main compensation method is to use the difference of the two bridge offset voltages. The drift of offset voltage with temperature is reduced by using this method so that temperature charcteristics is improved. In this method the temperature effect in the range of 22~100.deg. C was compensated over 80%.

  • PDF

Compensation Strategy to Eliminate the Effect of Current Measurement Offsets in Grid-Connected Inverters

  • Lee, Chang-Hee;Choi, Jong-Woo
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.383-391
    • /
    • 2014
  • For the digital control of systems such as grid-connected inverters, measuring inverter output currents accurately is essential. However, current measurement offsets are inevitably generated by current measurement paths and cause DC current components in real inverter output currents. Real inverter output currents with DC components cause the DC-link capacitor voltage to oscillate at the frequency of a utility voltage. For these reasons, current measurement offsets deteriorate the overall system performance. A compensation strategy to eliminate the effect of current measurement offsets in grid-connected inverters is proposed in this study. The validity of the proposed compensation strategy is verified through simulations and experiments. Results show that the proposed compensation strategy improves the performance of grid-connected inverters.

CCVT의 2차 전압 보상 방법 (Compensation of the Secondary Voltage of a Coupling Capacitor Voltage Transformer)

  • 강용철;정태영;이지훈;장성일;김용균
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.909-914
    • /
    • 2008
  • A coupling capacitor voltage transformer(CCVT) is used in an extra or ultra high voltage system to obtain the standard low voltage signal for protection. To avoid the phase angle error between the primary and secondary voltages, a tuning reactor is connected between a capacitor and a voltage transformer. The inductance of the reactor is designed based on the power system frequency. If a fault occurs on the power system, the secondary voltage of the CCVT contains some errors due to a dc offset component and harmonic components resulting from the fault. The errors become severe in the case of a close-in fault. This paper proposes an algorithm for compensating the secondary voltage of a CCVT in the time-domain. From the measured secondary voltage of the CCVT, the secondary and primary currents are obtained; then the voltage across the capacitor and the inductor is calculated and then added to the measured secondary voltage to obtain the correct primary voltage. Test results indicate that the proposed algorithm can compensate the distorted secondary voltage of the CCVT irrespective of the fault distance, the fault inception angle, and the burden of the CCVT.

3권선 CCVT의 2차 전압 보상 방법 (Compensation of the Secondary Voltage of a Three Winding Coupling Capacitor Voltage Transformer)

  • 강용철;김연희;정태영;장성일;김용균
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.938-943
    • /
    • 2008
  • Coupling capacitor voltage transformers(CCVTs) have been used in extra or ultra high voltage systems to obtain the standard low voltage signal for protection and measurement. For fast suppression of the phenomenon of ferroresonance, three winding CCVTs are used instead of two winding CCVTs. A tuning reactor is connected between a capacitor voltage divider and a voltage transformer to reduce the phase angle difference between the primary and secondary voltages in the steady state. Slight distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has significant errors due to the transient components such as dc offset component and/or high frequency components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of a three winding CCVT in the time domain. With the values of the measured secondary voltage of the three winding CCVT, the secondary, tertiary and primary currents and voltages are estimated; then the voltages across the capacitor and the tuning reactor are calculated and then added to the measured voltage. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the three winding CCVT irrespective of the fault distance, the fault impedance and the fault inception angle as well as in the steady state.

다중채널 A/D 변환 데이터획득시스템의 개발 (A Multi-Channel A/D Data Acquisition System)

  • 박찬원;이민섭;반윤호
    • 산업기술연구
    • /
    • 제25권A호
    • /
    • pp.183-189
    • /
    • 2005
  • In precision instrumentation system, an A/D conversion of signal conditioning has some problems.; offset and drift errors with environmental situation. This paper suggested a development of the Multi-Channel A/D Data Acquisition System and a method of the evaluation and the temperature compensation for the A/D converters with the specific analog and digital circuit including the software. Also, we have designed a hardware and a software filters with smart algorithm for better signal processing of the proposed system. Software approach was adopted to obtain the stable data from A/D converter. As shown in our experimental works, the proposed system is expected to be used in the industrial field where a high precision measurement is required.

  • PDF

선형압축기 구동용 LPMSM의 위치 계산 방법 (Method for Calculating the Position of the LPMSM for Driving Linear Compressor)

  • 안정렬;전태원;이홍희;김흥근;노의철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.584-586
    • /
    • 2005
  • The stroke of piston in the linear compressor driven by LPMSM can be obtained from integrating the input voltage and current of LPMSM, and may be diverged due to dc components In the voltage and current. The strategy to prevent the divergence of stroke using both the high-pass filter and dc offset compensation was suggested. The equations for the magnitude and phase of the stroke and also dc offset including the stroke are derived as a function of the cut-off frequency of HPF. The performance of stroke calculation scheme has been verified by experimentally on a linear compressor drive system, where the control was implemented by a 16-bit DSP.

  • PDF

고정자 저항 보상기를 갖는 유도전동기의 직접벡터제어 (Direct Vector Control of Induction Motor with Compensator of Stator Resistance)

  • 정종진;이득기;김흥근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권10호
    • /
    • pp.555-561
    • /
    • 1999
  • This paper proposes a new compensation algorithm for stator resistance that is crucial for improving the direct vector control performance of an induction motor. This algorithm is based on the flux estimator that is derived from the stator voltage equation. Since a flux estimator is dependent on the stator resistance, a flux error originates from the variation of the stator resistance. This parameter mismatch in the estimator thereafter affects the flux and torque response. Accordingly, a new compensator has been designed to offset this degradation in the responses. The proposed compensator is very simple to implement and does not require any modifications to the motor model or any special interruptions of the controller. The value of the stator resistance is attained in real time through measuring the terminal voltage and current. The effectiveness of the proposed scheme has been confirmed through both simulation and experimentation.

  • PDF

Improved Flux and Torque Estimators of a Direct Torque Controlled Interior PM Machine with Compensations for Dead-time Effects and Forward Voltage Drops

  • Sayeef, Saad;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.438-446
    • /
    • 2009
  • The performance of direct torque controlled (DTC) interior permanent magnet (IPM) machines is poor at low speeds due to a few reasons, namely limited accuracy of stator voltage acquisition and the presence of offset and drift components in the acquired signals. Due to factors such as forward voltage drop across switching devices in the three phase inverter and dead-time of the devices, the voltage across the machine terminals differ from the reference voltage vector used to estimate stator flux and electromagnetic torque. This can lead to instability of the IPM drive during low speed operation. Compensation schemes for forward voltage drops and dead-time are proposed and implemented in real-time control, resulting in improved performance of the space vector modulated DTC IPM drive, especially at low speeds. No additional hardware is required for these compensators.