• Title/Summary/Keyword: Oceanographic factors

Search Result 66, Processing Time 0.022 seconds

Effects of Meteorological Factors on Water Temperature, Salinity in the West Sea of Korea (한국 서해에서 수온 및 염분에 미치는 기상 인자의 영향)

  • Lee, Chung-Il;Lee, Jong-Hee;Kim, Dons-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.1 s.28
    • /
    • pp.29-37
    • /
    • 2007
  • The effect of meteorological factors such as air temperature (AT), wind speed (WS), precipitation (Pre) on the variation of water temperature (WT) and salinity (Sal) in the West Sea of Korea for the period 1971 to 2001 was illustrated. As a result of this study, WT-AT, WT-Pre, and Sal-WS had positive correlation, reversely WT-WS, Sal-AT and Sal- Pre had negative correlation. In the surface layer, time lag between atmospheric factors and oceanographic factors was 0 to 4 months, on the other hand in the bottom layer, it was delayed 0 to 4 months compared to the surface. WT was affected by AT in the same year, but Sal was affected by precipitation in the previous year. The variation of WT and Sal was in harmony with change of wind speed.

  • PDF

Establishment of a Dynamic Factor Prediction Module for Risk Assessment in Coastal Activity Sites (연안활동장소 위험도 평가를 위한 동적요소 예측 모듈 구축)

  • Young Jae Yoo;Dong Soo Jeon;Won Kyung Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.5
    • /
    • pp.95-101
    • /
    • 2023
  • Recent persistent coastal developments have expanded recreational areas and enhanced accessibility. However, this growth has also led to a rise in safety incidents. These accident factors can be divided into human-made and natural types. The latter is comprised of dynamic factors like waves, tides, sea fogs, and winds. While institutions like the Korea Meteorological Administration and the Korea Hydrographic and Oceanographic Agency already offer data on these dynamic factors, the resolution is often insufficient for a precise assessment of localized risks. In this study, to overcome these limitations, we utilized the dynamic information from existing open systems to construct a high-resolution numerical simulation. Through this, we developed an automated module to predict dynamic factors in localized coastal activity areas. Particularly during the module's construction, we compared and reviewed the numerical prediction results for waves with observed wave heights.

Effects of Meteorological and Oceanographic Properties on Variability of Laver Production at Nakdong River Estuary, South Coast of Korea (낙동강 하구 해양환경 및 기상 요인이 김P(orphyra yezoensis) 생산량 변화에 미치는 영향)

  • Kwon, Jung-No;Shim, JeongHee;Lee, Sang Yong;Cho, Jin Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.868-877
    • /
    • 2013
  • To understand the effects of marine environmental and meteorological parameters on laver Porphyra yezoensis production at Nakdong River Estuary, we analyzed marine environmental (water temperature, salinity, nutrients, etc.) and meteorological properties (air temperature, wind speed, precipitation, sunshine hours) with yearly and monthly variations in laver production over 10 years (2003-2013). Air and water temperature, wind speed, sunshine hours and precipitation were major factors affecting yearly variability in laver production at the Nakdong River Estuary. Lower air and water temperatures together with higher levels of nutrients and sunshine and stronger wind speeds resulted in higher laver harvests. Salinity and nitrogen did not show clear correlations with laver production, mainly due to the plentiful supply of nitrogen from river discharge and the low frequency of environmental measurements, which resulted in low statistical confidence. However, environmental factors affecting monthly laver production were related to the life cycle (culturing stage) of Porphyra yezoensis and were somewhat different from factors affecting annual laver production. In November, a young laver needs lower water temperatures for rapid growth, while a mature laver needs much stronger winds and more sunshine, as well as lower temperatures for massive production and effective photosynthesis, mostly in December and January. However, in spring (March), more stable environments with fewer fluctuations in air temperature are needed to sustain the production of newly deployed culture-nets ($2^{nd}$ time culture). These results indicate that rapid changes in weather and marine environments caused by global climate change will negatively affect laver production and, thus, to sustain the yield of and predict future variability in laver production at the Nakdong River estuary, environmental variation around laver culturing farms needs to be monitored with high resolution in space and time.

A Study on the Assembling Factors and Catch Fluctuation of Fyke Net Grounds in the Coastal Waters of Yosu(I) -Relation between Catch Fluctuation of Common Mullet, Mugil Cephalus and Temperature and Salinity - (여수 연안 승망 어장의 환경요인과 어획변동에 관한 연구(I) -수온.염분과 어획량과의 관계 -)

  • 김동수;주찬순
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.71-77
    • /
    • 2001
  • In order to find out the environmental factors influencing the catch of fyke nets in the coastal waters Yosu, the oceanographic factors, i.e., the waters temperature and the salinity were observed respectively from April to November in 1999, and each of them was compared with the catch of common mullet, Mugil cephalus by fyke net. The results obtained are summerized as follows : 1. The water temperature was ranged from 13.0 to $25^\circ$C and water temperature increased from April to August and decreased on September to November. 2. The range salinity in the fishing grounds was from 28.6 to 33.8$\textperthousand$, and salinity was high from April to June. From July, however, the salinity decreased to continue a low value still september. 3. The catches of common mullet caught by funnel net were the highest in may and the smallest in November. The ranges of optimum water temperature for the funnel nets fishing was 15.0 to $16.0^\circ$C, the ranges of optimum salinity for fishing varied between from 32.6 to 33.8$\textperthousand$.

  • PDF

Influence of Seasonal Forcing on Habitat Use by Bottlenose Dolphins Tursiops truncatus in the Northern Adriatic Sea

  • Bearzi, Giovanni;Azzellino, Arianna;Politi, Elena;Costa, Marina;Bastianini, Mauro
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.175-182
    • /
    • 2008
  • Bottlenose dolphins are the only cetaceans regularly observed in the northern Adriatic Sea, but they survive at low densities and are exposed to significant threats. This study investigates some of the factors that influence habitat use by the animals in a largely homogeneous environment by combining dolphin data with hydrological and physiographical variables sampled from oceanographic ships. Surveys were conducted year-round between 2003 and 2006, totalling 3,397 km of effort. Habitat modelling based on a binary stepwise logistic regression analysis predicted between 81% and 93% of the cells where animals were present. Seven environmental covariates were important predictors: oxygen saturation, water temperature, density anomaly, gradient of density anomaly, turbidity, distance from the nearest coast and bottom depth. The model selected consistent predictors in spring and summer. However, the relationship (inverse or direct) between each predictor and dolphin presence varied among seasons, and different predictors were selected in fall. This suggests that dolphin distribution changed depending on seasonal forcing. As the study area is relatively uniform in terms of bottom topography, habitat use by the animals seems to depend on complex interactions among hydrological variables, caused primarily by seasonal change and likely to determine shifts in prey distribution.

Spring and Summer Zooplankton Community near Tongyeong and Namhaedo in the South Sea of Korea (통영-남해도 주변해역의 봄-여름 동물플랑크톤 군집)

  • DO, An-Thanh;LEE, Jeong-Hoon;CHOI, Jung-Wha;PARK, Won-Gyu;LEE, Ki-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.869-877
    • /
    • 2017
  • The monthly variations of zooplankton community were investigated at 12 stations near Tongyeong and Namhaedo in the South Sea of Korea from April to July, 2012. Zooplankton samples were collected by a plankton net (RN80) from near the bottom to the surface. Zooplankton community consisted of 97 taxa, and the mean abundance ranged from $213inds.m^{-3}$ in July to $426inds.m^{-3}$ in April. Copepods constituted 38.98% of zooplankton abundance, and included 39 species. Calanus sinicus, Corycaeus affinis, Paracalanus parvus s.l., copepodids, Evadne nordmonni, Podon leuckarti, cirriped nauplii, Muggiacea sp., Diphyes sp., and Zonosagitta bedoti were dominant species. Of these, Calanus sinicus was the most abundant throughout the study period, being constituted 18.6% of total zooplankton abundance. The density variations of dominant species between stations and months were correlated with the environmental factors. Zooplankton community varied with by sampling months, being influenced by monthly oceanographic variations.

Ocean Surface Current Retrieval Using Doppler Centroid of ERS-1 Raw SAR Data

  • Kim Ji-Eun;Kim Duk-jin;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.590-593
    • /
    • 2004
  • Extraction of ocean surface current velocity offers important physical oceanographic parameters especially on understanding ocean environment. Although Remote Sensing techniques were highly developed, the investigation of ocean surface current using Synthetic Aperture Radar (SAR) is not an easy task. This paper presents the results of ocean surface current observation using Doppler Centroid of ERS-1 SAR data obtained off the coast of Korea peninsula. We employed the concept, in which Doppler frequency shift and the ocean surface current are closely related, to evaluate ocean surface current. Moving targets cause Doppler frequency shift of the back scattered radar waves of SAR, thus the line-of-sight velocity component of the scatters can be evaluated. The Doppler frequency shift can be measured by estimating the difference between Doppler Centroid of raw SAR data and reference Doppler Centroid. Theoretically, the Doppler Centroid is zero; however, squinted antenna which is affected by several physical factors causes Doppler Centroid to be nonzero. The reference Doppler Centroid can be obtained from measurements of sensor trajectory, attitude and Earth model. The estimated Doppler Centroid was compensated by considering the accurate attitude estimation of ERS-1 SAR. We could verify the correspondence between the estimated ocean surface current and observed in-situ data in the error bound.

  • PDF

A Study on the Relationship between Meteorological Condition and Wave Measurement using X-band Radar (X-밴드 레이더 파랑 계측과 기상 상태 연관성 고찰)

  • Youngjun, Yang
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.517-524
    • /
    • 2022
  • This paper analyzes wave measurement using X-band navigation (ship) radar, changes in radar signal due to snowfall and precipitation, and factors that obstruct wave measurement. Data obtained from the radar installed at Sokcho Beach were used, and data from the Korea Meteorological Administration and the Korea Hydrographic and Oceanographic Agency were used for the meteorological data needed for comparative verification. Data from the Korea Meteorological Administration are measured at Sokcho Meteorological Observatory, which is about 7km away from the radar, and data from the Korea Hydrographic and Oceanographic Agency are measured at a buoy about 3km away from the radar. To this point, changes in radar signals due to rainfall or snowfall have been transmitted empirically, and there is no case of an analysis comparing the results to actual weather data. Therefore, in this paper, precipitation, snowfall data, CCTV, and radar signals from the Korea Meteorological Administration were comprehensively analyzed in time series. As a result, it was confirmed that the wave height measured by the radar according to snowfall and rainfall was reduced compared to the actual wave height, and a decrease in the radar signal strength according to the distance was also confirmed. This paper is meaningful in that it comprehensively analyzes the decrease in the signal strength of radar according to snowfall and rainfall.

Climate Change and Depletion of Walleye Pollock Resources in the East Sea (기후변화와 동해안에서의 명태 자원의 고갈)

  • Kim, Jong-Gyu;Kim, Joong-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.3
    • /
    • pp.259-266
    • /
    • 2018
  • Objectives: Considered the "national fish" in Korea, the walleye pollock (Gadus chalcogrammus) has disappeared in the East Sea (Sea of Japan), a main habitat and fishing ground for the species. The reason for the disappearance is still a matter of controversy. This study was performed to investigate the long-term relationship between the walleye pollock catch and various meteorological and oceanographic factors in these waters. Methods: Fishery data on walleye pollock and data on meteorological and marine environmental factors over the 30 years (1981-2010) were obtained from the official national database. Time series analysis and correlation and regression analyses were performed to study the relationships. Results: Both air temperature and sea surface temperature in the East Sea rose over these 30 years, and the latter became more prominent. Salinity and dissolved oxygen showed a tendency to decrease while concentrations of nutrients such as nitrite nitrogen and nitrate nitrogen showed an increasing tendency. Sea surface temperature, air temperature, atmospheric pressure, and wind grade were negatively correlated with the catch size of walleye pollock (p<0.05), but salinity was positively correlated (p<0.001). Conclusion: The results of this study indicate that climate change, especially ocean warming, affected the habitat of walleye pollock. The results also indicate that lower sea surface and air temperatures, milder wind grade, and higher salinity were preferred for the survival of the fish species. It is necessary to pay attention to changes of the ocean ecosystem in terms of environmental pollution as well as seawater temperature.

Distribution of the Anchovy Eggs Associated with Coastal Frontal Structure in Southern Coastal Waters of Korea (한국 남해 연안 전선구조에 따른 멸치 알의 분포)

  • Kim, Joo-Il;Kim, Jin-Young;Choi, Yong-Kyu;Oh, Hyun-Ju;Chu, Eun-Kyeong
    • Korean Journal of Ichthyology
    • /
    • v.17 no.3
    • /
    • pp.205-216
    • /
    • 2005
  • Variation of anchovy spawning grounds was analyzed based on egg distribution and oceanographic factors in southern coastal waters of Korea in April, June, and August of 2003 and 2004. Environmental factors showed a range of $10.2{\sim}30.7^{\circ}C$ in surface temperature, 25.7~34.7 in surface salinity, $0.14{\sim}0.67{\mu}g/L$ in chlorophyll-a, and $111.52{\sim}262.37mg/m^2$ in zooplankton biomass. Eggs were mainly distributed in temperatures of $14.7{\sim}26.9^{\circ}C$ and salinities of 31.0~34.6 in accordance with seasonal variation of temperature and salinity. Egg density increased in accordance with the high level of zooplankton biomass during the summer season. Anchovy spawning grounds during August of 2004 tended to concentrate in the outward front area between offshore warm-water and coastal cool-water masses.