• Title/Summary/Keyword: Ocean effect

Search Result 3,227, Processing Time 0.029 seconds

Numerical Study on Floating-Body Motions in Finite Depth

  • Kim, Tae-Young;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.176-184
    • /
    • 2012
  • Installing floating structures in a coastal area requires careful observation of the finite-depth effect. In this paper, a Rankine panel method that includes the finite-depth effect is developed in the time domain. The bottom boundary condition is satisfied by directly distributing Rankine panels on the bottom surface. A stepwise analysis is performed for the radiation diffraction problems and consequently freely-floating motion responses over different water depths. The hydrodynamic properties of two test hulls, a Series 60 and a floating barge, are compared to the results from another computation program for validation purposes. The results for both hulls change remarkably as the water depth becomes shallower. The important features of the results are addressed and the effects of a finite depth are discussed.

Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

  • Zou, Chang-Fang;Wang, De-Yu;Cai, Zhong-Hua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.670-690
    • /
    • 2015
  • In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

Studies on Screening of Seaweed Extracts for Peroxynitrite and DPPH Radical Scavenging Activities (과산화아질산염과 DPPH 라디칼에 대한 해조추출물의 소거 활성 효과)

  • Lee, Hee-Jung;Kim, You-Ah;Park, Ki-Eui;Jung, Hyun-Ah;Yoo, Jong-Su;Ahn, Jong-Woong;Lee, Burm-Jong;Seo, Young-Wan
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • As a part of our search for novel antioxidants from the seaweeds, we have investigated radical scavenging effect for their crude extracts using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, authentic peroxynitrite, and 3-morpholinsydnonimine (SIN-1), a peroxynitrite-generating species in vitro. Thirty-four seaweeds were screened for $ONOO^-$ and DPPH radical scavenging activities. A potent inhibitory effect against peroxynitrite generated by SIN-1 at $5{\mu}g/ml$ of methanol extracts was observed in order of Ishige okamurae(95.3%), Sargassum hemiphyllum(90.2%), Symphyocladia latiuscula(89.6%), Porphyra suborbiculata(86.7%), and Gelidium amamsii(85.9%), Also, a significant scavenging effect against direct authentic peroxynitrite was revekaled for methanol extracts of Ishige okamurae(66.2%) and Sargassum hemiphyllum(55.2%) and the acetone/methylene chloride(1:1) extract of Gigatina tenella (61.0%). In our measurement for evaluating the capacity to scavenge the stable free radical of DPPH, acetone/methylene chloride(1:1) extracts of Symphyocladia latiuscula, Gloiopeltis furcata, and Sargassum thunbergii and the methanol extract of Sargassum sp. showed an inhibitory potency of 85.8%, 82.8%, 74.1%, and 64.0%, respectively.

Effect of Free Surface Based on Submergence Depth of Underwater Vehicle

  • Youn, Taek-Geun;Kim, Min-Jae;Kim, Moon-Chan;Kang, Jin-Gu
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.83-90
    • /
    • 2022
  • This paper presents the minimum submergence depth of an underwater vehicle that can remove the effect of free surface on the resistance of the underwater vehicle. The total resistance of the underwater vehicle in fully submerged modes comprises only viscous pressure and friction resistances, and no wave resistance should be present, based on the free surface effect. In a model test performed in this study, the resistance is measured in the range of 2 to 10 kn (1.03-5.14 m/s) under depth conditions of 850 mm (2.6D) and 1250 mm (3.8D), respectively, and the residual resistance coefficients are compared. Subsequently, resistance analysis is performed via computational fluid dynamics (CFD) simulation to investigate the free surface effect based on various submergence depths. First, the numerical analysis results in the absence of free surface conditions and the model test results are compared to show the tendency of the resistance coefficients and the reliability of the CFD simulation results. Subsequently, numerical analysis results of submergence depth presented in a reference paper are compared with the model test results. These two sets of results confirm that the resistance increased due to the free surface effect as the high speed and depth approach the free surface. Therefore, to identify a fully submerged depth that is not affected by the free surface effect, case studies for various depths are conducted via numerical analysis, and a correlation for the fully submerged depth based on the Froude number of an underwater vehicle is derived.

Path following of a surface ship sailing in restricted waters under wind effect using robust H guaranteed cost control

  • Wang, Jian-qin;Zou, Zao-jian;Wang, Tao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.606-623
    • /
    • 2019
  • The path following problem of a ship sailing in restricted waters under wind effect is investigated based on Robust $H_{\infty}$ Guaranteed Cost Control (RHGCC). To design the controller, the ship maneuvering motion is modeled as a linear uncertain system with norm-bounded time-varying parametric uncertainty. To counteract the bank and wind effects, the integral of path error is augmented to the original system. Based on the extended linear uncertain system, sufficient conditions for existence of the RHGCC are given. To obtain an optimal robust $H_{\infty}$ guaranteed cost control law, a convex optimization problem with Linear Matrix Inequality (LMI) constraints is formulated, which minimizes the guaranteed cost of the close-loop system and mitigates the effect of external disturbance on the performance output. Numerical simulations have confirmed the effectiveness and robustness of the proposed control strategy for the path following goal of a ship sailing in restricted waters under wind effect.

Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1159-1175
    • /
    • 2015
  • In this study, the effect of temperature variation on the wireless impedance monitoring is analyzed for the tendon-anchorage connection of the prestressed concrete girder. Firstly, three impedance features, which are peak frequency, root mean square deviation (RMSD) index, and correlation coefficient (CC) index, are selected to estimate the effects of temperature variation and prestress-loss on impedance signatures. Secondly, wireless impedance tests are performed on the tendon-anchorage connection for which a series of temperature variation and prestress-loss events are simulated. Thirdly, the effect of temperature variation on impedance signatures measured from the tendon-anchorage connection is estimated by the three impedance features. Finally, the effect of prestress-loss on impedance signatures is also estimated by the three impedance features. The relative effects of temperature variation and prestress-loss are comparatively examined.

An Experimental Study of Non-Electrolysis Anti-Microfouling Technology Based on Bioelectric Effect

  • Young Wook Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.172-179
    • /
    • 2023
  • Biofouling initiated by biofilm (slime) formation is a key challenge for practical ocean engineering and construction. This study evaluated a new anti-biofilm technology using bioelectricity. The anti-microfouling electrical technology is based on the principles of the bioelectric effect, known as the application of an electrostatic force for biofilm removal. Previously, the electricity was optimized below 0.82V to avoid electrolysis, which can prevent the production of biocides. A test boat comprised of microelectronics for electrical signal generation with electrodes for an anti-biofouling effect was developed. The tests were conducted in the West Sea of Korea (Wangsan Marina, Incheon) for three weeks. The surface biofouling was quantified. A significant reduction of fouling was observed under the bioelectric effect conditions, with approximately 30% enhanced prevention of fouling progress (P<0.05). This technology can be an alternative eco-friendly technique for anti-microfouling that can be applied for canals, vessels, and coastal infrastructure because it does not induce electrolysis.

Application of time-dependent wave equations to random waves over ripple patch

  • Lee, Chang-Hoon;Suh, Kyung-Doug;Park, Woo-Sun
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.109-114
    • /
    • 1996
  • In a linear dispersive system, the combined effect of water wave frnnsformations such as refraction, diffraction, shoaling, and reflection can be predicted by the mild-slope equation which was developed by Berkhoff (1972) using the Galerkin-eigenfunction method. In the derivation of the equation, he assumed a mild slope of the bottom $\nabla$h/kh << 1 (where $\nabla$ is the horizontal gradient operator, k is the wavenumber, and h is the water depth) and thus neglected second-order bottom effect terms proportional to O($\nabla$h)$^2$ and O($\nabla$$^2$h). (omitted)

  • PDF

Influence of slot width on the performance of multi-stage overtopping wave energy converters

  • Jungrungruengtaworn, Sirirat;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.668-676
    • /
    • 2017
  • A two-dimensional numerical investigation is performed to study the influence of slot width of multi-stage stationary floating overtopping wave energy devices on overtopping flow rate and performance. The hydraulic efficiency based on captured crest energy of different device layouts is compared with that of single-stage device to determine the effect of the geometrical design. The results show optimal trends giving a huge increase in overtopping energy. Plots of efficiency versus the relative slot width show that, for multi-stage devices, the greatest hydraulic efficiency is achieved at an intermediate value of the variable within the parametric range considered, relative slot width of 0.15 and 0.2 depending on design layouts. Moreover, an application of adaptive slot width of multi-stage device is investigated. The numerical results show that the overall hydraulic efficiency of non-adaptive and adaptive slot devices are approximately on par. The effect of adaptive slot width on performance can be negligible.

On wave damping effect due to the crest width variation of a permeable submerged breakwater (투과성 잠제의 폭 변화에 따른 파랑감쇠 효과에 관하여)

  • Hur, Dong-Soo;Choi, Dong-Seok;Bae, Ki-Seong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.453-456
    • /
    • 2006
  • To examine the effect of shape and crest width variation of a permeable submerged breakwater on the wave energy dissipation, Two-Dimensional numerical model with Large Eddy Simulation, which is able to simulate directly WAve Structure Seabed interaction (hereafter, LES-WASS-2D) has been newly developed. A good agreement has been obtained by the comparison between the existing experimental results and LES-WASS-2D model's results for the permeable submerged breakwater. Moreover, based on the LES-WASS-2D model, the wave energy dissipation due to a permeable submerged breakwater are discussed for regular and irregular waves with relation to its crest width and shape.

  • PDF