DOI QR코드

DOI QR Code

An Experimental Study of Non-Electrolysis Anti-Microfouling Technology Based on Bioelectric Effect

  • Received : 2023.06.23
  • Accepted : 2023.08.14
  • Published : 2023.08.31

Abstract

Biofouling initiated by biofilm (slime) formation is a key challenge for practical ocean engineering and construction. This study evaluated a new anti-biofilm technology using bioelectricity. The anti-microfouling electrical technology is based on the principles of the bioelectric effect, known as the application of an electrostatic force for biofilm removal. Previously, the electricity was optimized below 0.82V to avoid electrolysis, which can prevent the production of biocides. A test boat comprised of microelectronics for electrical signal generation with electrodes for an anti-biofouling effect was developed. The tests were conducted in the West Sea of Korea (Wangsan Marina, Incheon) for three weeks. The surface biofouling was quantified. A significant reduction of fouling was observed under the bioelectric effect conditions, with approximately 30% enhanced prevention of fouling progress (P<0.05). This technology can be an alternative eco-friendly technique for anti-microfouling that can be applied for canals, vessels, and coastal infrastructure because it does not induce electrolysis.

Keywords

Acknowledgement

Author thank the College of Medicine, University of Ulsan, for the technical support.

References

  1. Amara, I., Miled, W., Slama R. B., & Ladhari, N. (2018). Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ Toxicol Pharmacol, 57, 115-130. https://doi.org/10.1016/j.etap.2017.12.001
  2. Bailey, R. A. (2008). Design of comparative experiments. Cambridge University Press. ISBN 978-0-521-68357-9.
  3. Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on earth. Proceedings of the National Academy of Sciences, 115(25), 6506-6511. https://doi.org/10.1073/pnas.1711842115
  4. Beech, B. (2004). Corrosion of technical materials in the presence of biofilms-current understanding and state-of-the art methods of study. International Biodeterioration & Biodegradation, 53(3), 177-183. https://doi.org/10.1016/S0964-8305(03)00092-1
  5. Camara, M., Green, W., MacPhee, C. E., Rakowska, P. D., Raval, R., Richardson, M. C., Slater-Jefferies, J., Steventon, K., & Webb, J. S. (2022). Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge. npj Biofilms and Microbiomes, 8, 42. https://doi.org/10.1038/s41522-022-00306-y
  6. Clarke, E. (2016). Levels of selection in biofilms: multispecies biofilms are not evolutionary individuals. Biology & Philosophy, 31, 191-212. https://doi.org/10.1007/s10539-016-9517-3
  7. Czermanski, E., Oniszczuk-Jastrzabek, A., Spangenberg, E. F., Kozlowski, L., Adamowicz, M., Jankiewicz, J., & Cirella, G. T. (2022). Implementation of the energy efficiency existing ship index: An important but costly step towards ocean protection, Marine Policy, 145, 105259.
  8. Del Pozo, J. L., Rouse, M. S., & Patel, R. (2008). Bioelectric Effect and Bacterial Biofilms. a Systematic Review. The International journal of artificial organs, 31(9), 786-795. https://doi.org/10.1177/03913988080310090
  9. Ehrlich, G. D., Stoodley, P., Kathju, S., Zhao, Y., McLeod, B. R., Balaban, N., Hu, F. Z., Sotereanos, N. G., Costerton, J. W., Stewart, P. S., Post, J. C., & Lin, Q. (2005). Engineering approaches for the detection and control of orthopaedic biofilm infections. Clinical orthopaedics and related research, 437, 59-66. https://doi.org/10.1097/00003086-200508000-00011
  10. First, M. R., Riley, S. C., Islam, K. A., Hill, V., Li, J., Zimmernan, R. C., & Drake, L. A. (2021). Rapid quantification of biofouling with an inexpensive, underwater camera and image analysis. Management of Biological Invasions, 12(3), 599-617. https://doi.org/10.3391/mbi.2021.12.3.06
  11. Fitridge, I., Dempster, T., Guenther, J., & de Nys, R. (2012). The impact and control of biofouling in marine aquaculture: a review. Biofouling, 28, 649-669. https://doi.org/10.1080/08927014.2012.700478
  12. Flemming, H. C., & Wuertz, S. (2019). Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews Microbiology. 17, 247-260. https://doi.org/10.1038/s41579-019-0158-9
  13. Freebairn, D., Linton, D., Harkin-Jones, E., Jones, D. S., Gilmore, B. F., & Gorman, S. P. (2013). Electrical methods of controlling bacterial adhesion and biofilm on device surfaces. Expert Review of Medical Devices, 10(1), 85-103. https://doi.org/10.1586/erd.12.70
  14. Garrett, R., Bhakoo, M., & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18(9), 1049-1056. https://doi.org/10.1016/j.pnsc.2008.04.001
  15. Gizer, G., Onal, U., Ram, M., & Sahiner, N. (2023). Biofouling and mitigation methods: A review, Biointerface Research in Applied Chemistry, 13(2), 185. https://doi.org/10.33263/BRIAC132.185
  16. Hu, Y., Han, X., Shi, L., & Cao, B. (2022). Electrochemically active biofilm-enabled biosensors: Current status and opportunities for biofilm engineering. Electrochim Acta, 428, 140917. https://doi.org/10.1016/j.electacta.2022.140917
  17. Huiszoon, R. C., Subramanian, S., Rajasekaran, P. R., Beardslee, L. A., Bentley, W. E., & Ghodssi, R. (2019). Flexible platform for in situ impedimetric detection and bioelectric effect treatment of escherichia coli biofilms. IEEE Transactions on Biomedical Engineering. 66(5), 1337-1345. https://doi.org/10.1109/TBME.2018.2872896.
  18. Hutchins, D., & Fu, F. (2017). Microorganisms and ocean global change. Nature Microbiology, 2, 17058. https://doi.org/10.1038/nmicrobiol.2017.58
  19. Isla, F., Tim, D., Jana, G., & Rocky, N. (2012). The impact and control of biofouling in marine aquaculture: a review. Biofouling, 28(7), 649-669. https://doi.org/10.1080/08927014.2012.700478
  20. Itoh, K., & Itoh, S. I. (1996). The role of the electric field in confinement. Plasma Physics and Controlled Fusion, 38(1), https://doi.org/10.1088/0741-3335/38/1/001
  21. Kim, Y. W., Sardari, S. E., Meyer, M. T., Iliadis, A. A., Wu, H. C., Bentley, W. E., & Ghodssi, R. (2012). An ALD aluminum oxide passivated surface acoustic wave sensor for early biofilm detection, Sensors and Actuators B: Chemical, 163(1), 136-145. https://doi.org/10.1016/j.snb.2012.01.021
  22. Kim, Y. W., Subramanian, S., Gerasopoulos, K., Ben-Yoav, H., Wu, H. C., Quan, D., Carter, K., Meyer, M. T., Bentley, W. E., & Ghodssi, R. (2015). Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect. npj Biofilms Microbiomes. 1, 15016. https://doi.org/10.1038/npjbiofilms.2015.16
  23. Kim, Y. W., Meyer, M. T., Berkovich, A., Subramanian, S., Iliadis, A. A., Bentley, W. E., & Ghodssi, R. (2016). A surface acoustic wave biofilm sensor integrated with a treatment method based on the bioelectric effect. Sensors and Actuators A: Physical 238, 140-149. https://doi.org/10.1016/j.sna.2015.12.001
  24. Kim, Y. W., Lee, J., Lee, T. H., & Lim, S. (2022). Bioelectric effect utilized a healthcare device for effective management of dental biofilms and gingivitis. Medical Engineering & Physics, 104, 103804. https://doi.org/10.1016/j.medengphy.2022.103804
  25. Molnar, J. L., Gamboa, R. L., Revenga, C., & Spalding, M. D. (2008). Assessing the global threat of invasive species to marine biodiversity. Frontiers in Ecology and the Environment, 6(9), 485-492. https://doi.org/10.1890/070064
  26. Palmer, J., Flint, S., & Brooks, J. (2007). Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology and Biotechnology, 34(9), 577-588. https://doi.org/10.1007/s10295-007-0234-4
  27. Park, J.- S., & Lee, J.- H. (2018). Sea-trial verification of ultrasonic antifouling control. Biofouling. 34(1), 98-110. https://doi.org/10.1080/08927014.2017.1409347
  28. Subramanian, S., Huiszoon, R. C., Chu, S. W., Bentley, W. E., & Ghodssi, R. (2020). Microsystems for biofilm characterization and sensing - A review. Biofilm, 2, 100015. https://doi.org/10.1016/j.bioflm.2019.100015
  29. Xue, Y., Zhao, J., Qiu, R., Zheng, J., Lin, C., Ma, B., & Wang, P. (2015). In situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater. Applied Surface Science, 357(A), 60-68. https://doi.org/10.1016/j.apsusc.2015.08.232
  30. Yang, Y. F., Wan, L. S., Xu, Z. K. (2011). Surface engineering of microporous polypropylene membrane for antifouling: A mini-review. Journal of Adhesion Science and Technology, 25(1-3), 245-260. https://doi.org/10.1163/016942410X520835
  31. Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50(2), 75-104. https://doi.org/10.1016/j.porgcoat.2003.06.001