• 제목/요약/키워드: Ocean data assimilation

검색결과 59건 처리시간 0.025초

Assimilation of Oceanographic Data into Numerical Models over the Seas around Korea

  • Kim, Seung-Bum
    • 대한원격탐사학회지
    • /
    • 제17권4호
    • /
    • pp.345-357
    • /
    • 2001
  • This review provides a summary of data assimilation applied to the seas around Korea. Currently the worldwide efforts are devoted to applying advanced assimilation to realistic cases, thanks to improvements in mathematical foundations of assimilation methods and the computing capabilities, and also to the availability of extensive observational data such as from satellites. Over the seas around Korea, however, the latest developments in the advanced assimilation methods have yet to be applied. Thus it would be timely to review the progress in data assimilation over the seas. Firstly, the definition and necessity of data assimilation are described, continued by a brief summary of major assimilation methods. Then a review of past research on the ocean data assimilation in the regional seas around Korea is given and future trends are considered. Special consideration is given to the assimilation of remotely-sensed data.

자료동화 기법에 따른 황·동중국해 지역 해양순환모델 결과 비교 (Comparison of Data Assimilation Methods in a Regional Ocean Circulation Model for the Yellow and East China Seas)

  • 이준호;문재홍;최영진
    • Ocean and Polar Research
    • /
    • 제42권3호
    • /
    • pp.179-194
    • /
    • 2020
  • The present study aims to evaluate the effects of satellite-based SST (OSTIA) assimilation on a regional ocean circulation model for the Yellow and East China Seas (YECS), using three different assimilation methods: the Ensemble Optimal Interpolation (EnOI), Ensemble Kalman Filter (EnKF), and 4-Dimensional Variational (4DVAR) techniques, which are widely used in the ocean modeling communities. The model experiments show that an improved initial condition by assimilating the SST affects the seasonal water temperature and water mass distributions of the YECS. In particular, the SST data assimilation influences the temperature structures horizontally and vertically in winter, thereby improving the behavior of the YS warm current water. This is due to the fact that during wintertime the water column is well mixed, which is directly updated by the SST assimilation. The model comparisons indicate that the SST assimilation can improve the model performance in resolving the subsurface structures in wintertime, but has a relatively small impact in summertime due to the strong stratification. The differences among the different assimilation experiments are obvious when the SST was sharply changed due to a typhoon passage. Overall, the EnKF and 4DVAR show better agreement with the observations than the EnOI. The relatively low performance of EnOI under storm conditions may be related with a limitation of EnOI method whereby an analysis is obtained from a number of climatological fields, and thus the typhoon-induced SST changes in short-time scales may not be adequately reflected in the data assimilation.

기상청 전지구 해양자료동화시스템 2(GODAPS2): 운영체계 및 개선사항 (Global Ocean Data Assimilation and Prediction System 2 in KMA: Operational System and Improvements)

  • 박형식;이조한;이상민;황승언;부경온
    • 대기
    • /
    • 제33권4호
    • /
    • pp.423-440
    • /
    • 2023
  • The updated version of Global Ocean Data Assimilation and Prediction System (GODAPS) in the NIMS/KMA (National Institute of Meteorological Sciences/Korea Meteorological Administration), which has been in operation since December 2021, is being introduced. This technical note on GODAPS2 describes main progress and updates to the previous version of GODAPS, a software tool for the operating system, and its improvements. GODAPS2 is based on Forecasting Ocean Assimilation Model (FOAM) vn14.1, instead of previous version, FOAM vn13. The southern limit of the model domain has been extended from 77°S to 85°S, allowing the modelling of the circulation under ice shelves in Antarctica. The adoption of non-linear free surface and variable volume layers, the update of vertical mixing parameterization, and the adjustment of isopycnal diffusion coefficient for the ocean model decrease the model biases. For the sea-ice model, four vertical ice layers and an additional snow layer on top of the ice layers are being used instead of previous single ice and snow layers. The changes for data assimilation include the updated treatment for background error covariance, a newly added bias scheme combined with observation bias, the application of a new bias correction for sea level anomaly, an extension of the assimilation window from 1 day to 2 days, and separate assimilations for ocean and sea-ice. For comparison, we present the difference between GODAPS and GODAPS2. The verification results show that GODAPS2 yields an overall improved simulation compared to GODAPS.

접합대순환모형의 초기조건 생산방법에 따른 북반구 겨울철 기온과 해수면 온도의 계절 예측성 비교 연구 (Comparative Study on the Seasonal Predictability Dependency of Boreal Winter 2m Temperature and Sea Surface Temperature on CGCM Initial Conditions)

  • 안중배;이준리
    • 대기
    • /
    • 제25권2호
    • /
    • pp.353-366
    • /
    • 2015
  • The impact of land and ocean initial condition on coupled general circulation model seasonal predictability is assessed in this study. The CGCM used here is Pusan National University Couple General Circulation Model (PNU CGCM). The seasonal predictability of the surface air temperature and ocean potential temperature for boreal winter are evaluated with 4 different experiments which are combinations of 2 types of land initial conditions (AMI and CMI) and 2 types of ocean initial conditions (DA and noDA). EXP1 is the experiment using climatological land initial condition and ocean initial condition to which the data assimilation technique is not applied. EXP2 is same with EXP1 but used ocean data assimilation applied ocean initial condition. EXP3 is same with EXP1 but AMIP-type land initial condition is used for this experiment. EXP4 is the experiment using the AMIP-type land initial condition and data assimilated ocean initial condition. By comparing these 4 experiments, it is revealed that the impact of data assimilated ocean initial is dominant compared to AMIP-type land initial condition for seasonal predictability of CGCM. The spatial and temporal patterns of EXP2 and EXP4 to which the data assimilation technique is applied were improved compared to the others (EXP1 and EXP3) in boreal winter 2m temperature and sea surface temperature prediction.

Development of the Korea Ocean Prediction System

  • Suk, Moon-Sik;Chang, Kyung-Il;Nam, Soo-Yong;Park, Sung-Hyea
    • Ocean and Polar Research
    • /
    • 제23권2호
    • /
    • pp.181-188
    • /
    • 2001
  • We describe here the Korea ocean prediction system that closely resembles operational numerical weather prediction systems. This prediction system will be served for real-time forecasts. The core of the system is a three-dimensional primitive equation numerical circulation model, based on ${\sigma}$-coordinate. Remotely sensed multi-channel sea surface temperature (MCSST) is imposed at the surface. Residual subsurface temperature is assimilated through the relationship between vertical temperature structure function and residual of sea surface height (RSSH) using an optimal interpolation scheme. A unified grid system, named as [K-E-Y], that covers the entire seas around Korea is used. We present and compare hindcasting results during 1990-1999 from a model forced by MCSST without incorporating RSSH data assimilation and the one with both MCSST and RSSH assimilated. The data assimilation is applied only in the East Sea, hence the comparison focuses principally on the mesoscale features prevalent in the East Sea. It is shown that the model with the data assimilation exhibits considerable skill in simulating both the permanent and transient mesoscale features in the East Sea.

  • PDF

전지구 예보모델의 대기-해양 약한 결합자료동화 활용성에 대한 연구 (Application of Weakly Coupled Data Assimilation in Global NWP System)

  • 윤현진;박혜선;김범수;박정현;임정옥;부경온;강현석
    • 대기
    • /
    • 제29권2호
    • /
    • pp.219-226
    • /
    • 2019
  • Generally, the weather forecast system has been run using prescribed ocean condition. As it is widely known that coupling between atmosphere and ocean process produces consistent initial condition at all-time scales to improve forecast skill, there are many trials on the application of data assimilation of coupled model. In this study, we implemented a weakly coupled data assimilation (short for WCDA) system in global NWP model with low horizontal resolution for coupled forecast with uncoupled initialization, following WCDA system at the Met Office. The experiment is carried out for a typhoon evolution forecast in 2017. Air-sea exchange process provides SST cooling and gives a substantial impact on tendency of central pressure changes in the decaying phase of the typhoon, except the underestimated central pressure. Coupled data assimilation is a challenging new area, requiring further work, but it would offer the potential for improving air-sea feedback process on NWP timescales and finally contributing forecast accuracy.

지역 해양순환예측시스템에 대한 OSTIA 해수면온도 자료동화 효과에 관한 연구 (Impacts of OSTIA Sea Surface Temperature in Regional Ocean Data Assimilation System)

  • 김지혜;엄현민;최종국;이상민;김영호;장필훈
    • 한국해양학회지:바다
    • /
    • 제20권1호
    • /
    • pp.1-15
    • /
    • 2015
  • 한반도 주변을 연구해역으로 하는 지역 해양순환예측시스템을 이용하여 관측기반의 분석 자료인 Operational Sea Surface Temperature and Sea Ice Analysis(OSTIA) 해수면 온도 자료의 동화를 통한 초기장 개선효과가 황해, 동중국해 그리고 동해의 해수면온도 예측결과에 미치는 영향을 조사하였다. 이를 위해서, 본 연구에서는 3차원 최적내삽법을 적용한 실험(Exp. DA)과 적용하지 않은 실험(Exp. NoDA)을 수행하여 각각의 실험결과를 관측자료와 비교 분석하였다. 2011년 9월 OSTIA 해수면 온도 자료와의 비교결과, Exp. NoDA는 24, 48, 72 예측시간에서 약 $1.5^{\circ}C$의 비교적 높은 Root Mean Square Error(RMSE)를 보였으나, Exp. DA에서는 모든 예측시간에서 $0.8^{\circ}C$ 이하의 상대적으로 낮은 RMSE가 나타났다. 특히, 초기 24시간 예측결과에서 RMSE는 $0.57^{\circ}C$를 보여 Exp. NoDA에 비해 예측성능이 크게 향상된 결과를 보였다. 해역별로는 황해와 동해에서 자료동화 적용 시, 60% 이상의 높은 RMSE 감소율이 나타났다. 기상청 8개 지점 연안 계류부이의 표층수온 자료를 이용하여 자료동화 효과를 계절적으로 살펴본 결과, 전반적으로 여름철을 제외한 모든 계절에서 자료동화 적용 후 70% 이상의 높은 RMSE 감소율을 보여 한반도 연안 표층수온의 단기 예측성이 향상됨을 확인하였다. 또한, 해수면 온도 자료의 동화로 인한 해양상층부의 수온구조 변화를 살펴보기 위해 동해를 대표해역으로 하여 Argo 수온 프로파일 자료와 실험결과를 비교하였다. 특히 연직 혼합이 강한 겨울철 해양 상층부(<100 m) 경우 Exp. DA의 RMSE가 Exp. NoDA에 비해 약 $1.5^{\circ}C$ 감소한 결과를 보여 해수면 온도의 자료동화 효과가 해양상층부의 수온 예측성 향상에 기여함을 확인하였다. 하지만, 겨울철 혼합층 아래에서는 Argo 관측 대비 수온 오차가 오히려 증가한 해역도 존재하여 해수면 온도 자료동화의 한계성도 나타났다.

Data Assimilation for Oceanographic Application: A Brief Overview

  • Park, Seon-K.
    • Journal of the korean society of oceanography
    • /
    • 제38권2호
    • /
    • pp.52-59
    • /
    • 2003
  • In this paper, a brief overview on data assimilation is provided in the context of oceanographic application. The ocean data assimilation needs to ingest various types of data such as satellites and floats, thus essentially requires dynamically-consistent assimilation methods. For such purpose, sequential and variational approaches are discussed and compared. The major advantage of the Kalman filter (KF) is that it can forecast error covariances at each time step. However, for models with very large dimension of state vector, the KF Is exceedingly expensive and computationally less efficient than four-dimensional variational assimilation (4D-Var). For operational application, simplified 4D-Var schemes as well as ensemble KF may be considered.

기상청 전지구 해양순환예측시스템(NEMO/NEMOVAR)과 미해군 해양자료 동화시스템(HYCOM/NCODA)의 해양 일분석장 열적환경 정확도 비교 (A Comparison of Accuracy of the Ocean Thermal Environments Using the Daily Analysis Data of the KMA NEMO/NEMOVAR and the US Navy HYCOM/NCODA)

  • 고은별;문일주;정영윤;장필훈
    • 대기
    • /
    • 제28권1호
    • /
    • pp.99-112
    • /
    • 2018
  • In this study, the accuracy of ocean analysis data, which are produced from the Korea Meteorological Administration (KMA) Nucleus for European Modelling of the Ocean/Variational Data Assimilation (NEMO/NEMOVAR, hereafter NEMO) system and the HYbrid Coordinate Ocean Model/Navy Coupled Ocean Data Assimilation (HYCOM/NCODA, hereafter HYCOM) system, was evaluated using various oceanic observation data from March 2015 to February 2016. The evaluation was made for oceanic thermal environments in the tropical Pacific, the western North Pacific, and the Korean peninsula. NEMO generally outperformed HYCOM in the three regions. Particularly, in the tropical Pacific, the RMSEs (Root Mean Square Errors) of NEMO for both the sea surface temperature and vertical water temperature profile were about 50% smaller than those of HYCOM. In the western North Pacific, in which the observational data were not used for data assimilation, the RMSE of NEMO profiles up to 1000 m ($0.49^{\circ}C$) was much lower than that of HYCOM ($0.73^{\circ}C$). Around the Korean peninsula, the difference in RMSE between the two models was small (NEMO, $0.61^{\circ}C$; HYCOM, $0.72^{\circ}C$), in which their errors show relatively big in the winter and small in the summer. The differences reported here in the accuracy between NEMO and HYCOM for the thermal environments may be attributed to horizontal and vertical resolutions of the models, vertical coordinate and mixing scheme, data quality control system, data used for data assimilation, and atmosphere forcing. The present results can be used as a basic data to evaluate the accuracy of NEMO, before it becomes the operational model of the KMA providing real-time ocean analysis and prediction data.