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Abstract : This review provides a summary of data assimilation applied to the seas around Korea.

Currently the worldwide efforts are devoted to applying advanced assimilation to realistic cases, thanks to

improvements in mathematical foundations of assimilation methods and the computing capabilities, and

also to the availability of extensive observational data such as from satellites. Over the seas around Korea,

however, the latest developments in the advanced assimilation methods have vet to be applied. Thus it

would be timely to review the progress in data assimilation over the seas. Firstly, the definition and

necessity of data assimilation are described, continued by a brief summary of major assimilation methods.

Then a review of past research on the ocean data assimilation in the regional seas around Korea is given

and future trends are considered. Special consideration is given to the assimilation of remotely-sensed data.
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1. Introduction

Data assimilation is a method to improve the
utility of observation data, remotely-sensed and in
situ alike, and the performance of a numerical
model. The basic theory and mathematics of data
assirnilation have been developed in the areas of
optimal estimation and automatic control (Gelb,
1974). One of the initial and popular applications
was the tracking of combat aircrafts. In
geophysics, meteorologists have been using data

assimilation since 50s. They established an
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operational system as early as in 70s and are
currently operating an advanced scheme like a 4-
D variational method in the atmospheric model of
European Centre for Medium-Range Forecast
(ECMWF, Marecal et al., 2001). In physical
oceanography, the development was much
delayed, for example, the direct insertion by
Malanotte-Rizzoli and Holland (1986). Outside the
above fields, data assimilation can be applied so
long as numerical models and observational data
are available: e.g,, ion-layer modeling (Rosen et al.,
2001).

~345-



Korean Journal of Remote Sensing, Vol.17, No.4, 2001

The necessity of data assimilation lies in that via
the assimilation the deficiency of a model and
observation can be compensated by the merits of
each other. The model deficiency can be classified
as model equation error and model representation
error {Fukumori, 2001). The former includes
truncation error, errors due to griding scheme and
so forth, while the latter arises due to lack of
layers, ignored physics etc. Observations are
incomplete because of noise, limitation in space-
time coverage and the inability to measure certain
parameters such as in-depth properties. From a
remote sensing viewpoints, satellite observations
are limited only to the surface. Although many
efforts are paid to infer in-depth properties from
surface observations (e.g., Imawaki ef al., 2001),
generally it is difficult. Using satellite observations
as initial/boundary conditions of a model can
improve the model only at the moment of forcing,
but cannot influence the model performance
dynamically and consistently throughout the
model’s entire temporal and spatial domains.
Data assimilation is required to extract physical
signals from observations and extend the signals
into unobservable variables or unobservable
regions.

Despite the merits of the assimilation, only in
the late 90s the ocean data assimilation became
practical and accurate. The main reasons for the
delay are the lack of need for forecasting and
accurate modeling, comparative deficiency in
observational data, and immaturity of numerical
models. During 90s it was realized that ocean
forecasting is not merely an academic issue any
more, instead that the ocean is an integral and
active part in the earth’s climate system. The
realization was triggered by observing the climate
phenomena such as global warming, El Nino and
North Atlantic Oscillation. Then it was confirmed

by discovering the essential role of the ocean such
as CO2 absorption, global transportation of heat,
salt and freshwater. To meet the need for better
understanding of the ocean, globally-concerted
observation programs such as WOCE (World
Ocean Circulation Experiment), TOGA (Tropical
Ocean Global Atmosphere Experiment) and
GOOS (Global Ocean Observing System) have
been undertaken since 90s and provided
unprecedented amount of observational data. So
did remote sensing satellites such as TOPEX/
Poseidon (T/P) and NOAA. In ocean modeling,
models are now good enough to reproduce reality
at fine scale, e.g., eddies. Following these
progresses in observations and modeling, data
assimilation has been developed to form an
international activity such as the Global Ocean
Data Assimilation Experiment (GODAE).
Currently advanced assimilation schemes are run
on global scales (e.g., Fukumori et al., 1999).

By comparison, assimilation over the seas
around Korea appears not as mature. Thus a
review of the status of ocean data assimilation
over the seas around Korea will help take part in

the rapid advance in the research frontiers.

2. Overview of Methods

Data assimilation methods in oceanography are
originally developed in meteorology fields. Ghil
and Malanotte-Rizzoli (1991, GM91 hereafter) and
Fukumori (2001) give a good summary of
oceanographic implementation of data
assimilation. The mathematical notations follow
those in Fukumori (2001). The characters in a bold
and gothic font represent matrixes.

Data assimilation is basically an inverse method

and can be expressed as:
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A(x)=y, (1)

where x is unknown, y the observation and A
represents the data and model equations. x
includes model variables such as temperature and
salinity over the entire temporal and spatial
domains of a model. The data equation relates a
model state variable to an observation (e.g., x; =
sea surface temperature from satellite). The model
equation is an expression of model dynamics such
as the continuity equation.

The theoretical difficulty of data assimilation
arises because it is an ill-posed problem:
practically the rank of y cannot be greater than
that of x. For example, it is not possible to measure
the absolute velocity accurately, nor can one
obtain a complete coverage of temperature and
salinity in time and space. Various assimilation
methods are not more than the search of optimum
solution for x.

Noting that there are quite a few assimilation
methods, the classification of the methods would
help to understand the nature of each method.
Fukumori (2001) distinguishes advanced from
simple methods depending on whether the
inverse problem is solved throughout the entire
time span (i.e., the index of x includes time), which
is whether the dynamic consistency is maintained
throughout the solution search. According to
GM91, the advanced methods can be further
grouped into statistical approaches where the
variance between the model and the observation
is minimized (the Kalman filter) and control
approaches where the model-observation distance
is minimized by least squares (variational
methods such as the adjoint or the representer).
Simple methods (OI, nudging and direct
insertion) have been developed in meteorology to

meet the need for operational forecast.

Below, a brief summary of major methods is
given. Since a complete mathematical description
can be found elsewhere, the focus is made on
descriptive accounts. Each method is reviewed in
the following aspects: optimization scheme,
practical difficulties such as computation and

liberalization and error specification.

1) Adjoint Method

In the adjoint method, the optimal solution of
the inverse problem, Eq. 1, is obtained by

minimizing the cost function J:
JX)=(y-A(x)) W(y-A(x)), (2)

where W is the weighting or error covariance
matrix. For the minimization the gradient J(x)/dx
is computed using the model’s adjoint equations.
To transform Eq. 2 into a constrained
minimization problem, it is useful to introduce a
Lagrange function. Then the adjoint equations are
the derivatives of the Lagrange function with
respect to the model state variables. In this respect,
the advantage of the adjoint method is the
transformation into a constrained problem. As for
disadvantages, firstly, one must construct the
adjoint equations. Though it has been a difficult
task, now their generators are available (Gierling
and Kaminski, 1998). Secondly, the integration of
the adjoint equations and the forward model has
to be repeated tens of times, which requires
significant computing power. As a solution,
various approximations and reduction schemes
have been developed (see Bennett, 1999). A
posteriori error for the assimilation can be

specified accurately (Thacker, 1989).

2) Representer Method

The representer method (Bennett, 1992)
simplifies Eq. 1 into Euler-Lagrange equation by
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employing a representer. A representer is a linear
combination of some model equations, e.g.,
(dw/dt + du/dx-F), where u is the velocity and F the
forcing (Bennett, 1999). Then the assimilation
becomes the determination of the coefficients of a
representer. The coefficient determination is
achieved by the minimization of a cost function as
in Eq. 2. Simplification of Eq. 1 can be made by
using other basis functions such as the model
Green'’s function (Stammer and Wunsch, 1996).

3) Kalman Filter

The Kalman filter (Kalman, 1960) was
developed for aircraft tracking and many
applications are found in engineering field. Two
integral parts of the Kalman filter are a sequential
scheme and the optimal weight K. The sequential
scheme is expressed as (Gelb, 1974, GM91):

ka= Akv\x'lf;l

. . 3)

x, = x; + K (y,-H;x;)
where k denotes time, f forward prediction, a the
analysis or the revision of the past through
assimilation, and H is a matrix such that Hx is the
model’s theoretical estimate (i.e., the size of y; is
smaller than xi). Eq. 1 covers the entire time span
while x; covers only the unit time frame at k, thus
X 2 X,. An optimal K can be determined uniquely
from an error covariance matrix P:

K, =P/H,(H;PH, +R,)"

T ; 4)

P=(x;-x) (x¢-x))
where R is the noise covariance matrix. x[ is such
that y; =Hkx2+b, where t stands for truth and b the
noise. R and b are assumed to be known. The
optimality is obtained by minimizing the variance,
({y-A(x)>{y-A(x)>) with brackets being an

average.

The Kalman filter is a statistical average of the
model state prior to assimilation and data,
weighted according to the uncertainties (error
covariance). The Kalman filter assimilation is also
called the Kalman smoother because it smoothes
the future prediction using the past measurement.

Unlike the variational methods such as the
adjoint, the Kalman filter runs sequentially in time
(past observations are discarded after
assimilation) and uses the minimum variance
rather than the least square estimator (LSE).
Essentially, however, both the adjoint and the
Kalman filter cover the entire time span and, as
discussed in Wunsch (1996), the minimum
variance estimation and the LSE are the same.

The greatest obstacle in the Kalman filter
utilization is the computation of P. If the order of
computation required for the sequential equation
or in Eq. 3 is O(N), that for P is O(N?). Note that N
has the size of O(6) (see Section 2).

Finally, the Kalman filter is often used for
satellite data assimilation because the method
runs sequentially in time and satellite data are
given periodically. An example of assimilating
spaceborne sensing of temperature and sea
surface elevation can be found in Kelly and Qiu
(1995) and assimilation of various altimetric data

are available in the works by I. Fukumori.

4) Optimal Interpolation (Ol)

The optimal interpolation (Gandin, 1963) is one
of the most frequently used methods for
operational data assimilation. Ol is a minimum
variance sequential estimator and may be
regarded as a simplified version of the Kalman
filter. The key difference from the Kalman filter is
that the error covariance (P in Eq. 4), is prescribed
rather than optimally estimated. Commonly P is

given as a Gaussian function with respect to the
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distance in time or space. Consideration of
observational errors is possible as well during the
prescription of P. P is determined only once while
in the Kalman filter it is updated in each instance
of time throughout the time domain of interest. In
this regard, Ol is in fact a suboptimal estimator.
Naturally, OI does not provide the error during
the assimilation unlike the Kalman filter. With O,
it is not possible to improve model parameters
and to assimilate 4-dimensional observations
dynamically. Despite the limitations, Ol is widely
used for an operational forecast because of light
computing load, though still more expensive than

nudging and direct insertion.

5) Direct Insertion (Blending) and Nudging
Direct insertion (Hurlburt, 1986) is expressed as:
Xpq) = QY- (1= 0)xg. (5)

a is an empirical weight constant. It may be
regarded as a highly simplified version of Ol, in
that « is a scalar constant in the direct insertion
but spatially varies in Ol. An underlying
assumption behind the fact that the observation yy
is used for the next estimation by only a constant
multiplication is the infinite confidence on the
accuracy of the observation. This method is
similar to model initialization by observation data:
when a = 1, the two become identical. Direct
insertion (e.g. Malanotte-Rizzoli and Holland

1986) is essentially the same as nudging.

6) Utility of Data Assimilation

In this section, the discussion is made on what
benefits can be gained by data assimilation,
especially data assimilation as a tool to improve a
numerical model.

m Data assimilation solves the following

deficiencies in observations and models: limitation

in time and space of in-situ observations,
confinement limitation to the surface of remote
sensing data, and improvement of inaccurate
model state variables. For example, statistical
interpolation of altimeter data does not provide
realistic picture while dynamic interpolation
(assimilation) does (White et al., 1990).

s Data assimilation also improves model
parameters, external forcing and boundary
conditions: e.g., the phase speed of a model in
Smedstad and O'Brien (1991).

m Data assimilation provides the error in the
model estimation, for example, the error
covariance matrix P of the Kalman filter. This is
one significant advantage over simple application
of observations to a model via initial conditions.

® Through data assimilation the accuracy in
forecast would improve (e.g., El Nino index
prediction of Lee ¢t al., 2000). Without data
assimilation, not all the model state variables and
parameters are improved by even the most
accurate observations. Thus the prediction would
not be as accurate as one after assimilation.

m Even when data assimilation were infinitely
powerful, the assimilated result would still
contain errors. The errors would arise from
observation errors and incompleteness in models
such as concepts (e.g., reduced gravity
assumption), approximations (e.g., of nonlinear
physics), or implementation (griding scheme).
Then a posteriori error of data assimilation can
provide a basis for necessary improvements of the
models incompleteness.

B Data assimilation can also be used to
determine the configuration of an observation
system such as the temporal and spatial sampling
interval (White, 1995 for XBT; Verron ef al., 1996
for T/P).

Last, it should be addressed that data
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assimilation not always improve the model
performance. Because data assimilation fits the
model into the observation, if errors exist in the
observations, data assimilation may degrade the
model performance. The greatest danger of this
kind exists in the direct insertion method where
the observations are treated as if they have no
errors. On the other hand, other methods reflect
the observation errors: P of Eq. 4 for Ol and the

Kalman filter and W of the variational methods.

3. Assimilation of Remotely-
sensed Ocean Data

The most prominent difference in assimilation
between satellite data and other data is the size of
dimensions. Let us consider a model with the
horizontal grid of 200 by 100 and 20 vertical
layers, where there are four model state variables
(temperature, salinity and - & v- velocities). If the
time span is 5 years and an observation interval is
a week as in T/P observation, the dimension of x
is ~300 million. For y, its dimension becomes 3.5
million. Then inversion of A is not a trivial task.
Thus Hirose and Ostrovskii (2000) have to use a
supercomputer for the East Sea assimilation at
1/6° grid spacing. For these reasons, handling
such a large amount of data is a key issue in

assimilation of satellite data. Various physical and

computational approximations are made such as
reducing the model state (Fukumori and
Malanotte-Rizzoli, 1995) and the model itself
(Menemenlis and Wunsch, 1997). To reduce the
dimension of data, only major modes of EOFs are
used (Verron et al., 1999). To simplify the
inversion of the Kalman gain matrix, the
correlation terms can be assumed zero under
certain physical conditions (Annan and
Hargreaves, 1999). To cope with fully nonlinear
models, an extended Kalman filter can be used
(Fukumori and Malanotte-Rizzoli, 1995).
Lermusiaux and Robinson (1999) estimate that by
using reduction schemes the computation time
may be reduced from an order of years for the full
Kalman filter to an order of hours.

Spatial coverage is also an important factor
determining the performance of an assimilation
system. Masina ef al. (2001) find that assimilation
of sparse data, 1° by 1° Reynolds sea surface
temperature (SST) that is the combination of in
situ and satellite observations, introduces
unrealistic spatial variability in the temperature
field. This deficiency is partially overcome when
they also assimilate altimeter observations since
the coverage is complete and uniform.

Table 1 summarizes the merits and drawbacks
of the assimilation methods reviewed above
especially from the viewpoint of satellite data

assimilation.

Table 1. Qualitative summary of merits and drawbacks of assimilation methods. Computation refers to computation cost. Model
improve refers the possibility to modify model parameters.

Method Acc-uracy Error specify Model improve Compu-tation  Assimilation of satellite data
Adjoint 0} 0 0 A 0}
Representer 0] 6] 0] A 0]
Kalman (0] ¢} (0] A 0
Ol X X X (0] 0
Blending & Nudging X X x 0 0
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4. Data Assimilation Applied
to the Seas around Korea

In this section, data assimilation work on the
seas around Korea is surveyed. Numerous
examples on global and other regional seas are
available, for which one may refer to GM91,
Malanotte-Rizzoli (1996) and Fukumori (2001).

1) East Sea

Hirose and Ostrovskii (2000) employ the
approximate Kalman filter of Fukumori and
Malanotte-Rizzoli (1995) for assimilation of the
T/P altimeter data into a 1/6° resolution 1.5 layer
reduced gravity model. The assimilation is
indented to remove the noise and undesired

signals and to dynamically interpolate the

altimetric observations. Compared with no-
assimilation case, assimilation correctly described
the evolution of the quasi-biennial variability in
sea surface elevation (Fig. 1).

In Yoshikawa et al. (1999) the nudging method
is applied to the assimilation of in-situ
temperature and salinity to a 1/4" resolution 20
layer model. After the assimilation, the errors in
the surface heat flux are reduced by 20% (Fig. 2).

Hirose ¢t al. (1999) use the Kalman filter for
assimilation of T/P altimeter. They run a hindcast
scheme from 1993 to 1994 to a 1.5 layer reduced-
gravity shallow water model. Through
assimilation, the strong variability of 20-cm?
variance is reconstructed at the subpolar front.

Bang et al. (1996) apply the direct insertion to

the circulation model of the East Sea. In-situ

i SSH Variability Simulation
e < 450day 10/92-12/97
¥ Cl=1.0cm

SSH Variability Assimilation
¥ <450day 10/92-12/97
" Cl=1.0cm

Fig. 1. Assimilation of T/P sea surface height (SSH) assimilation: before (left} and after (right). The contour of ~ 5 cm? is correctly
present after assimilation and it moves eastward temporally. From Figs. 8 and 12 of Hirose and Ostrovskii (2000).
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Averaged Heat Flux
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Fig. 2. Monthly mean surface heat flux after assimitation
(solid) and bulk-formulae estimation (broken). From
Yoshikawa et al. (1999).

temperature data collected from Korea, Japan and
US data centers are assimilated and they
experiment by empirically varying the gain « in
Eq. 5 and the temporal frequency of the insertion.
They find that nudging affects the model
performance significantly: measured in terms of
the stream function, the changes caused by
assimilation reach 100%.

Japan Meteorological Agency also runs a
nowcast system using Ol of altimetric surface
elevation and the temperatures from in-situ and
satellites (Yoshioka, 2000). Also, Princeton Ocean
Model has been used for hindcast using
climatorological and satellite data with the
nudging and Ol (Ro, 2000; Suk et al., 2000).

2) Yellow Sea

In the Yellow Sea, much of assimilation work is
devoted to tidal modeling because of the large

amplitude of tidal variations and energy

dissipation (8% of such energy dissipation
globally). One of the latest in assimilation by the
tidal model is by Lefevre et al. (2000) where the
representer method is applied for T/P data
assimilation to improve the modeling of tidal
variations and the tidal energy dissipation.

Yuan and Hsueh (1998) apply the adjoint
method to the vertically-integrated constant-
density Florida State Univ. model for assimilation
of in-situ sea surface temperature. By assimilating
for 1 month in 1986, they find the error in the
temperature prediction is accurate to 50% (Fig. 3).

Chu et al. (1997) determine the decorrelation
scales in time and space of the thermal variability
in the Yellow Sea with a view to applying them to
Ol, and also to designing the optimum
observational network as in White (1995). They
find the scales are 4 — 6 days and 50 - 80 km in
time and space, respectively.

Shulman ef al. (1998) optimize the boundary
condition by assimilation of tide gauge data and
transect data with application to the M2 tide
modeling in the Yellow Sea. They found 75%
reduction in the tidal errors when compared with
non-optimized case.

Blain (1997) assimilate the data from 114 tidal
gauge stations into a shallow water model to
determine sampling strategies for the best
assimilation performance. They find that the tidal
information from deep water is much less useful for
accurate tidal modeling than those from shallow
intermediate depths on the continental shelf.

In Lee and Jung (1996}, the direct insertion is
used for assimilation of tidal observations to a
shallow water model. The best weight for the
direct insertion, @ in Eq. 5, is determined
empirically. With the best &, the differences from
the in-situ reference data are 5 cm and 8° in

amplitude and phase, as opposed to 10 cm and 10°
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TEMPERATURE (DEGREE)

L
0 103 20.7 3]
DAY

Fig. 3. Effect of assimilation: temperature residuals at six mooring stations. Mooring (solid), after (short-dash) and before (long-
dash) assimilation. From Yuan and Hsueh (1998).

before assimilation. implementation and management of computer
memories, the domestic progress is limited to pilot
3) Pilot Stud Prog P
y studies rather than operational research. Song et
Since advanced methods require difficulties in al. (2000) implement the adjoint method for a
55, I .
2 Pl \ A
30 , s 1} T i
3145 - "“‘||‘r1’v| ...... i
= TR A 56 7 KO T00 (213015 161715 1920212225 26 2526 27 2829 0.3 3255 34 35 3637 3% .40
X-dir grid index
5 s (b)
=
2\ o
1234567 89100112131415161718 1020212223 24252627 28293031 323334 35363738 39 40
X-dir grid index

Fig. 4. Effect of assimilation: comparison of tidal amplitude between the mode (dots) and the truth (solid). Before
(a) and after (b) assimilation. From Song et al. (2000).
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linear tidal model in an idealized domain. By
assimilating tide gauge data, the assimilation
reproduces the observation with little error (Fig.
4). Lee et al. (2000) implement the Kalman filter
and assimilate a time-series of surface elevation
data into an idealized model domain. They
confirm that the assimilation improves the model
estimation and find that introduction of random

noise deteriorate the assimilation results.

4) Other Adjacent Seas

Numerous assimilation studies are available
over the South China Sea, the Kuroshio and its
Extension region. To list just a few of them, Chu ef
al. (1997) assimilate CTD data into Princeton
Ocean Model over the South China Sea using O},
noting that POM with surface flux forcing only is
weak in salinity prediction. By assimilation the
salinity is correctly estimated with r.ms.e. for
temperature being around 0.6°C, and for salinity
being around 0.06 ppt.

In Wu et al. (1999), T/P data are assimilated into
a 0.4° resolution 21-layer primitive equation

model by the direct insertion. After the

RMS Error(cm)

————

1 " —_ " " " " "
Feb Apr Jun Auf Oct Dec
1983

Fig. 5. Effect of assimilation: RMS error between T/P SSH
and model SSH. Before (W,R) and after (A)
assimilation. From Wu et al. (1999).

assimilation, the discrepancy between the model
results and independent observations is reduced
by a factor of more than two (Fig. 5).

Ishikawa et al. (1996) assimilate drifting buoy
and altimetry data over the Northwest Pacific into a
1.5 layer 1/12° primitive equation model using Ol.
After 1 year assimilation they observe that the error
in the surface elevation has decreased by 40%.

Finally it would be useful for interdisciplinary
cooperation to pay attention to the results of data
assimilation in engineering fields in Korea. Shin ef
al. (1998) implement an extended Kalman filter for
modeling of satellite orbit parameters such as the
velocity and attitude. In their work, the
observation data are ground measurements of the
absolute coordinates of control points, which
improve the state of the satellite orbit model.
Assessed by independent measurements, the
assimilation obtains 1 -2 pixel accuracy. Kim and
Lee (2000) apply Ol for generation of a digital
elevation model (DEM) from a set of scattered
elevation data. Their work is focused on the
determination of the special decorrelation: >100
km in the coastline direction and 50 km
perpendicular to the coastline. In their work, the
decorrelation scale has also been used for the
design of the spatial configuration of the

independent check points.

5. Future

Leading institutions around the world use the
advanced methods for global scale experiments
(e.g., Fukumori et al., 1999) or operational forecasts
(such as the adjoint assimilation for ECMWEF,
Marecal et al., 2001). By comparison, domestic
research is focusing on experimental studies of the

advanced methods with operational application of
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assimilation being accomplished with simple
methods. Also, on the seas around Korea though
many of the simple methods exhibit good
performances (Section 4), they are mainly for
diagnostic studies. For prediction, the advanced
methods would have to be used. In these regards,
the future activities will likely be on implementing
the advanced methods to realistic and nonlinear
models and on minimizing the computing load, as

discussed in Section 3.
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