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Data Assimilation for Oceanographic Application: A Brief Overview
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In this paper, a brief overview on data assimilation is provided in the context of oceanographic
application. The ocean data assimilation needs to ingest various types of data such as satellites and
floats, thus essentially requires dynamically-consistent assimilation methods. For such purpose,
sequential and variational approaches are discussed and compared. The major advantage of the
Kalman filter (KF) is that it can forecast error covariances at each time step. However, for models
with very large dimension of state vector, the KF is exceedingly expensive and computationally less
efficient than four-dimensional variational assimilation (4D-Var). For operational application,
simplified 4D-Var schemes as well as ensemble KF may be considered.
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INTRODUCTION

For given limited amount and potential errors of
observations, it is essential to extract the maximum
amount of information from available measurements,
and to incorporate observations distributed in time by
considering time evolution of the dynamical system.
Thus, a prediction system consists of 1) an assim-
ilation system that ingests observational data and
extracts useful information from the incomplete data;
and 2) a model that describes concerned phenomena
well and carries observational information forward to
a given prediction time.

Data assimilation (DA) denotes a process in which
observational data are melded together with a numer-
ical prediction model, which describes a dynamical
flow (ocean or atmosphere), in order to determine
the most accurate and complete states of the flow.
Using a numerical model, DA usually generates anal-
ysis from observations on a grid domain in a way
to achieve dynamical consistency. Accurate and effi-
cient estimation of a complex system such as a coastal
ocean can be obtained through DA, i.e., blending of
data and dynamics.

There exist several remarkable reviews on this sub-
ject. A comprehensive description of methods of data
analysis and assimilation is provided for meteorology
(Daley, 1991; Daley, 1997; Kalnay, 2003) and for ocean-
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ography (Anderson and Willebrand, 1989; Robinson
et al., 1998; Fukumori, 2001). A wealth of important
papers on current methods for DA appears in special
issues of Dyn. Ammos. Oceans (vol. 13, No. 3-4, 1989), J.
Meteor. Soc. Japan (vol. 75, No. 1B, 1997), and J.
Marine Systems (vol. 6, No. 1-2, 1995; vol. 40-41, 2003).
Talagrand (1997) provides an elegant theoretical
review on current DA methods. Reviews on different
scales of ocean DA are given by De Mey (1997) for
mesoscale and by Miller et al. (1997) for large scales.

Although various techniques are developed for DA,
they can be divided into two categories — sequential
and variational. In the sequential approach, the error
variances are estimated based on the data. It includes
several methods such as successive corrections (Cressman,
1959; Barnes, 1964), optimal interpolation (OI: Gan-
din, 1963; Robinson et al., 1989), nudging (or New-
tonian relaxation: Hoke and Anthes, 1976; Malanotte-
Rizzoli and Holland, 1986), and Kalman filtering
(Kalman, 1960). A rigorous discussion of present DA
methods with special emphasis on sequential methods
can be found in Ghil and Malanotte-Rizzoli (1991),
whereas recent advances in sequential estimation are
discussed in Ghil (1997).

In the variational approach, a functional (often
called a cost function) is defined to measure misfits
between model solutions and observational data, and
then an optimal initial state of the model is obtained
in the process of minimizing the functional using the
model dynamics as constraint. In the four-dimen-
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sional variational assimilation (4D-Var), the obser-
vational information is usually carried backward in
time via the so-called adjoint model. A collection of
papers on variational methods in geosciences appears
in Sasaki (1986). Courtier (1997) provides a theo-
retical review on variational methods. Most recently,
Park and 2upanski (2003) gave a comprehensive
review on application of the 4D-Var to mesoscale
weather prediction.

Compared to the atmosphere, the ocean includes
many dynamical processes that have more deter-
ministic characteristics. However, assimilation of
ocean data is still essential for balancing model errors
both in dynamics and physics as well as for rep-
resenting forcings better. DA, which can optimally
extract useful information from observations, is
regarded as a promising tool for improving prediction
skills and is increasingly used in oceanography. In
this study, various aspects of DA are briefly dis-
cussed, especially in the context of ocean prediction.
It is aimed to introduce some advanced DA systems
and to discuss the characteristics of each method
through non-mathematical descriptions, but not to
make a thorough comparison among them.

Section 2 explains modeling and observing systems
for ocean. Section 3 provides discussions on various
DA methods and their applications. It also introduces
some efficient DA methods for operational consid-
eration. Conclusions are given in section 4.

OCEAN MODELING AND OBSERVING
SYSTEMS

Governing equations in a numerical model describ-
ing ocean circulation are composed of equations of
momentum and conservation of heat, salt and mass,
and a state equation for sea water. For large scale
circulations, which are constrained by the wind, the
thermal fluxes and the coasts, the primitive equations
(PEs) with hydrostatic balance are normally used
instead of a vertical momentum equation. A complete
derivation of the PEs for large scale ocean circulation
can be found in Veronis (1973). Comprehensive reviews
on the ocean circulations and their modelings at var-
ious aspects are provided by Niiler (1992) and Haid-
vogel and Bryan (1992), respectively, in the context
of climate system modeling.

Some structures in the ocean are mesoscale —e.g.,
oceanic eddies and coastal waves. In the mesoscale,
the spatial scale is smaller than the planetary scale
for which the Rossby number is small. Thus, mesos-

cale motions are in general well described by the
quasi-geostrophic (QG) equations (De Mey, 1997),
in which momentum is more dominant than the ther-
modynamic exchanges.

The QG model assumes that the currents are rea-
sonably represented by geostrophy (though the sur-
face forcing may not necessarily be geostrophic). It
also assumes that the horizontal variation in tem-
perature is small — the QG framework does not pre-
dict temperature variations and thermodynamics are
represented in a simplified form, though it allows the
horizontal temperature gradient in the equation. In
this case, salt is usually neglected entirely. The QG
equations are computationally efficient because the
gravity waves are filtered out, thus allowing a long
computational time step.

The coastal ocean includes estuaries and the region
between the shoreline and the beginnings of the deep
ocean (Robinson et al., 1998); thus numerical models
dealing with the coastal oceans need to consider a
large range of phenomena and scales in both time
and space, which should handle with a variety of
physical processes of different scales (from milli-
meter to thousands of kilometers). A comprehensive
description for such processes in a coastal ocean pre-
diction system is referred to Robinson er al. (1998).
For these complex coastal ocean models, data assim-
ilation will be a challenging problem.

Making measurements of the ocean parameters is
difficult, especially in the subsurface. Most ships pro-
vide observational data on surface ocean and atmo-
sphere on their routes. It is called the comprehensive
ocean-atmosphere data set (COADS; NOAA, cited
2003a) and is usually obtained a few months behind
real time. But those data provide information neither
in the subsurface ocean nor on the global coverage.

Sea surface temperature (SST) is important in
assessing interaction between ocean and atmosphere.
Measurements of SST have been made routinely for
a long time. In these days, SST can also be measured
by satellite using infrared or microwave radiometers.
The gridded SST data may be available on a monthly
and/or weekly basis over much of the globe using
an optimal interpolation technique (Reynolds and
Smith, 1994). However, they do not tell much about
the structure of the subsurface ocean.

Temperature in the upper few hundred meters of
water can be measured by a device called an XBT
(eXpendable Bathy Thermograph; NOAA, cited 2003b),
which consists of a probe connected through a long
thin wire to recording equipment on the ship. As the
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probe drops through the water it measures temper-
ature which is relayed back along the wire. The probe
is assumed to have a certain fall rate, and thus a
time record of temperature can be transformed into
a depth record of temperature.

The World Ocean Circulation Experiment (WOCE)
aimed at surveying a large part of the ocean for the
first time (WCRP, cited 2003). The WOCE is a multi-
year international experiment to enhance knowledge
of the ocean circulation, especially the deeper ocean.
Much of the early part of the programme was devoted
to a one-time survey, to measure accurately the temper-
ature and salinity of the whole depth of the ocean
along selected sections, concentrating on measuring
parts of the ocean never previously measured. Satellite
altimetry played a big role in the WOCE, and a high-
quality satellite mission, TOPEX/POSEIDON (NASA,
cited 2003), was conducted to try to observe the spa-
tial variability in the ocean from measurements of
the top surface, as well as to determine the mean
surface elevation from which more accurate mea-
surements of the circulation field could be obtained.
After a field phase in 1990-1998, the WOCE has been
in the phase of analysis, interpretation, modeling and
synthesis (AIMS) until 2002.

Measuring the velocity field directly is more dif-
ficult than measuring the temperature field. Fortu-
nately, in much of the ocean, the temperature field
is more important for data assimilation (Moore et al.,
1987, Anderson and Moore, 1989). However, veloc-
ity data are important for understanding the move-
ment of properties by advective processes. One
promising approach is to use drifters. Drifters can
be deployed at other depths. The first deeper floats
were deployed in the sound channel in the ocean,
at a depth of 600-800 m where the sound speed is
a minimum, making this region a wave guide for
sound waves. More recently floats which do not
require a tracking array have been developed. They
drift at a preset depth but occasionally come to the
surface and transmit their position to a satellite, then
re-submerge to their operating depth. The rising-up
frequency is about 1 month with an operating depth
of 1,000 m, though variable. These floats do not
require tracking array, thus can be used in remote
places. Although they cannot map the eddy field with
a surfacing time of around 1 month, they can provide
information on mean currents. Assimilating this type
of data has not so far been attempted.

In a recent field program named ARGO, a global
array of 3,000 free-drifting profiling floats is being

deployed to measure temperature and salinity of the
upper 2,000 m of the ocean (Wilson, 2002). As those
floats move around the ocean, collected data will
span a variety of domains in space and time. Assim-
ilation of such data will be a challenging problem.

Further discussions on platforms, sensors, and sam-
pling methods for ocean observations for interdis-
ciplinary data assimilation appear in Dickey (1991,
2003). Busalacchi (1997) provides a comprehensive
review on ocean remote sensing as well as some
major international ocean field programs such as the
Tropical Ocean Global Atmosphere (TOGA: WCRP,
1985), the WOCE, and the Joint Global Ocean Flux Study
(JGOFS: JGOFS, cited 2003). Koblinsky and Smith
(2001) reviews the ocean observing systems in the
21th century.

DATA ASSIMILATION METHODS AND
APPLICATIONS

Assimilation of oceanic observations unavoidably
include various types of data from different observing
systems (e.g., satellites, ARGO floats, etc). Such
observations have different characteristics in terms of
spatial and temporal resolutions. When assimilated
into a model, this may lead to dynamic and ther-
modynamic imbalances among model variables.
Thus, a proper DA method to deal with this kind
of problem should be considered in the oceanic data
assimilation.

One of the simplest methods for four-dimensional
data assimilation (4DDA) is nudging (e.g., Malan-
otte-Rizzoli and Holland, 1986), which is based on
an empirical approach and inserts observation at the
nearest model grid point in space and time. The model
states are gradually nudged (or relaxed) toward the
observations via artificial relaxation terms added in
the model equations. However, the initial conditions
obtained through nudging are not guaranteed to be
dynamically consistent (Bao and Errico, 1997). That
is, without some special treatment, the nudging-gen-
erated initial conditions will undergo an initial adjust-
ment which may lead to occurrence of dynamical
instabilities and computational modes. Recently, some
efforts were made to determine optimal nudging coef-
ficients using variational method (e.g., Stauffer and
Bao, 1993). Detailed discussions on other assimilation
methods (e.g., direct insertion, optimal interpolation,
successive correction methods, etc.), which are not
dynamically consistent, are given in some review
papers and textbooks such as Robinson et al. (1998),
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Fukumori (2001), and Kalnay (2003).

There exist two approaches for the dynamically
consistent 4DDA - sequential and variational assim-
ilation (see reviews by Ghil and Malanotte-Rizzoli,
1991; Talagrand, 1997; Robinson et al., 1998; Fuku-
mori, 2001). Sequential assimilation is based on the
optimal estimation theory (Gelb, 1974). This approach was
first formulated for a linear system by Kalman
(1960), which came to be known as the Kalman filter
(KF), and was first introduced in meteorology by
Ghil et al. (1981) and in oceanography by Ghil and
Malanotte-Rizzoli (1991). The KF is designed to
optimally estimate the unknown states of a model
from noisy data taken at discrete real-time through
a linear, unbiased, and minimum error variance recur-
sive algorithm. The KF consists of an analysis step,
which uses the latest available observations to correct
a first guess of the state vector provided by a forecast
step, i.e., a model-computed time evolution of the
former analysis.

For practical application to nonlinear (more pre-
cisely quasi-linear) models, the extended KF (EKF)
is developed (Jazwinski, 1970; Gelb, 1974; Evensen,
1992); however, the evolution of its error covariance
is based on locally linearized dynamics. In unstable
regions the EKF will generate unbounded growth of
error variance. For models with very large dimension
of state vector (say, K), as in meteorological models,
this method is exceedingly expensive because the
storage and matrix operations in the EKF are pro-
portional to K? and K°, respectively.

Several order-reduction strategies have been devel-
oped to remedy problems related to the computa-
tional burden in the EKF. One simple approach is
to reduce the dimension of the model state vector
(e.g., Miller and Cane, 1989; Fukumori et al., 1993),
often with asymptotic assumption of constant error
covariance matrix (Fu et al., 1993; Fukumori and
Malanotte-Rizzoli, 1995; Fukumori, 1995). In another
approach, one might consider deducing the KF work-
ing space, e.g., undersampling the computational grid
used for the filter description (Fukumori, 1995) or
making low-rank approximation of error covariance
matrices (Cane ef al., 1996). The singular extended
evolutive Kalman filter (Pham ef al., 1998) is a direct
reduction of the EKF, given that the covariance
matrices can be approximated by such singular low-
rank matrices. In the ensemble Kalman filter (Evensen
1994), which can be used for nonlinear models, the
Monte Carlo approximation is made for filtering the
error covariance. The last approach relies on physical
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considerations that simplify the model error dynamics
and decrease the degree of freedom of the system
— for example, geostrophic approximation (Dee, 1991),
long wave approximation in the tropics (Cane and
Patton, 1984), etc.

Variational assimilation is based on the optimal
control theory (Lions, 1971) and the adjoint formulation
(Marchuk, 1975). The four-dimensional variational
data assimilation (4D-Var) is developed to obtain
optimal states of the atmosphere using multi-time-
level observations through model dynamics. The
major objective of 4D-Var is to obtain optimal input
parameters (e.g., initial conditions, model error, lat-
eral boundary conditions, parameterization coeffi-
cients, etc.) by globally fitting model solutions to all
available observations over an interval of time (i.e.,
assimilation period). The 4D-Var involves an iterative
process, which normally takes several tens iterations,
to minimize a cost function that measures the square
distance between the model solutions and the obser-
vations, using the model as constraint (i.e., con-
strained minimization). A backward run of the adjoint
model is carried to provide the gradient information
into the minimization process. Figure 1 shows the
processes involved in one iteration of 4D-Var, which con-
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sists of one forward nonlinear model run, one backward
adjoint model run, and a minimization process.

The 4D-Var approach have been applied to assim-
ilate altimetry data into the QG models (Morrow and
De Mey, 1995), the shallow water models (Cong et
al., 1998), and the PE models (Lee and Marotzke,
1997). Courtier (1997) provides a review on the the-
ory of 4D-Var, and Park and Zupanski (2003) on
applications to small scale meteorology. A compre-
hensive review on theory and application to the ocean cir-
culation problems is given by Fukumori (2001).

The 3D-Var method provides a suboptimal solution
to the model states using only one-time-level obser-
vation, thus less general and computationally less
demanding (e.g., Courtier et al., 1998). However, even
the 3D-Var method can improve the forecast sub-
stantially. Figure 2 depicts an example of applying
3D-Var to temperature forecast in tropical ocean (see
Derber and Rosati, 1989). In case A data are assim-
ifated throughout, while in case C no data are assim-
ilated. In case B, data are assimilated only during
an early period. When assimilation is switched off
in B, it quickly reverts towards the no-assimilation
case C. It demonstrates the importance of continuous
data assimilation.

For a purely linear problem, assuming that the same
error covariances are used, the 4D-Var becomes iden-
tical to the Kalman smoother (KS - composed of
computing a forward KF estimator and a backward
estimator for a time interval, and finding optimal lin-
ear combination between the two; see Zhu er al., 1999).
Li and Navon (2001) reported that various properties
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of equivalence of the 4D-Var to the KF and KS result
from optimality properties of 4DVAR. The KS (or
KF) explicitly evolves error covariance functions and
can forecast error covariances (so-called cycling) while
the 4D-Var only implicitly evolves error covariances dur-
ing the assimilation period and, if not combined with
some other method, cannot forecast and update error
covariances from one data assimilation cycle to another.

However, the KF carries observational information
only forward in time (i.e., from past to future), while
the 4D-Var can carry information both forward and
backward in time. It is also found that the 4D-Var
is more successful than the EKF in reconstruction
of the physical fields in data-void regions (see Ehren-
dorfer, 1992). Due to the enormous computational
demand required by KF, the cheaper 4D-Var is con-
sidered to be more appropriate for operational appli-
cation at the present time. A recently developed technique,
the ensemble KF (Evensen, 1994), has shown great
potential of saving computing time (e.g., Houtekamer
and Mitchell 1998), even making it possible to con-
sider operational applications.

A direct comparison between the EKF and the 4D-
Var (but not in the computational viewpoint) is made
by lkeda et al. (1995) for assimilating simulated altim-
eter data into a QG-based linear Rossby wave model.
They showed that the EKF was capable of generating
the proper vertical structure of the error covariance
functions, and the 4D-Var efficiently integrated solu-
tion-data mismatch. The major difference between
the two methods was that the 4D-Var could recon-
struct fields prior to observations, which was not pos-
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sible with the EKF.

Other advantages of 4DVAR include, as indicated
by Park and Zupanski (2003): 1) ability to accept
observations in their ‘raw’ (or near-raw) format, thus
eliminating the need for retrieval operations; 2) link-
age of the observations to the model variables in a
nonlinear manner; 3) projection of information from
the model space to observation space, and vice versa,
in a consistent manner through an observation oper-
ator; 4) implicit use of flow-dependent structure func-
tions which enables transfer of local information to
all model grids.

The conventional cost function used in the 4D-Var
includes a term measuring the distance to the back-
ground at the beginning of the interval, and a sum-
mation over time of each observational increment
(see Kalnay, 2003). In this case, the model is assumed
to be perfect and is used as a strong constraint (Sasaki,
1970a). In a weak constraint 4D-Var, the model errors
are accounted for in the cost function (Sasaki, 1970b;
Griffith and Nichols, 1996). Zupanski et al. (2002)
showed that the 4D-Var results using the forecast
model as a weak constraint were superior to those
with the strong constraint. Recently, Bennet (1992)
developed the so-called representer method, which
solves the variational problem with weak constraints
by seeking a solution linearly expanded into data
influence functions (i.e., representers) that correspond to
each separate observation. Then the assimilation problem
tries to determine the optimal coefficients of the rep-
resenters within the observational space rather than
the model state space, thus requiring less computing
time (e.g., Egbert ez al., 1994; Kivman, 1997). An
algorithmic overview on this method is referred to
Chua and Bennett (2001).

Since the standard 4D-Var still requires a large com-
putational time, some efficient methods have been devel-
oped. An incremental 4D-Var is developed by Courtier
et al. (1994), in which minimization is performed for
a coarse domain with simple physics and then the
increment is added to the full nonlinear forecast with
fine resolution. Huang et al. (1997) developed a poor
man’s 4D-Var by using the increment obtained
through the adjoint run into the 3D-OL. In the inverse
3D-Var, a quasi-inverse linear model! is used to obtain
an increment (Kalnay er al., 2000). The incremental
4D-Var scheme is in operational mode in several
weather centers in these days. Although these sim-
plified 4D-Var schemes are suboptimal, as those KF
schemes with order reduction, operational applica-
tions demonstrate that their results are much better

than those obtained from assimilation methods that
are not dynamically consistent.

CONCLUSIONS

In this study, a brief overview of data assimilation
is provided in the context of oceanic prediction sys-
tem. Basically the ocean data assimilation requires
to ingest various types of data including observations
from satellites and ARGO floats. Among many meth-
ods for data assimilation, discussions were focused
on the dynamically-consistent schemes represented
by the Kalman filtering (KF) and the 4D-Var. The
KF method demands a huge computer resources for
a model with a large dimension of state vector, and
several alternative strategies have been developed to
reduce the computational burden. Since the 4D-Var
is capable of accepting data in their raw format, it
can be an appropriate assimilation method to deal
with many different types of ocean data. However,
to properly handle with such data, proper nonlinear
observation operators should be developed.

Although the 4D-Var has many advantages, it still
demands a large amount of computing time and resources.
In operational sense, simplified 4D-Var methods,
such as incremental 4D-Var, poor man’s 4D-Var and
inverse 3D-Var, and their hybrid application should
be considered (see Park and Zupanski, 2003 for a
review). The ensemble KF is aiso a good candidate
for operational application but may need rigorous
tests. The model error should also be taken into
account as a weak constraint in the operational data
assimilation.

An elegant and practical way of developing and
testing an ocean assimilation system is to incorporate
artificial data into the ocean models. In this case,
(assimilated) data can be either taken from the same
model at a different point in its integration cycle or
from a different, usually more sophisticated, model.
Such so-called twin OSSEs (observing-systems sim-
ulation experiments; see Arnold and Dey, 1986)
allow introduction of limited data sets distributed in
space and time to test whether more complete data
can be recovered in a situation in which the true cir-
culation is already known in all respects. Thus, before we
jump into any DA system with complex ARGO data,
it is desirable to perform rigorous tests using the
OSSEs strategy. With some ARGO data available, it
might be possible to proceed with the OSEs (observ-
ing-systems experiments) for more realistic tests of
a DA system. '
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