• Title/Summary/Keyword: Ocean Environment Monitoring

Search Result 323, Processing Time 0.029 seconds

Trends of Phytoplankton Community and Water Quality and Implications for Management in Estuarine River Systems (국내 연안 하구역의 식물플랑크톤 생체량 (chlorophyll a) 및 수질 동향)

  • Lee, Chang-Hee;Cho, Ki-An;Song, Eun-Sook;Sin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.160-180
    • /
    • 2005
  • Long-term data (Ministry of Environment Water Quality Monitoring data) of phytoplankton biomass (chlorophyll a) and water quality were analyzed to investigate trends in biomass of the primary producers and water quality for the estuarine systems in Korea: Sumjin River, Han River, Asan Lake- Bay, Youngsan River, Keum River and Nakdong River. The literatures were also reviewed to examine the characteristics of phytoplankton biomass and water quality in the estuarine systems. The Sumjin River estuary, the single estuary without a dike in Korea showed the characteristics similar to other typical estuarine systems. Phytoplankton biomass was high during the fall at transitional regions (5 ${\sim}$ 15 psu) after riverine freshwater inputs were increased in summer. Concentrations of the nitrate and silicate were increased with the high river discharge rates. Phytoplankton biomass and nutrient concentrations were high during spring at the lower regions in the Han River whereas phytoplankton biomass and nutrient concentrations were high during spring at the upper regions in the Youngsan River. Phytoplankton biomass was the highest in the Asan Lake and nutrient concentrations were high at the upper region of the lake. In Nakdong River, phytoplankton biomass was high during winter and the biomass was slightly higher at upper region than at lower region. Long-term trends showed that total nitrogen and total phosphorus were mostly increased in the river systems. Implications of these results relevant to the water quality management for the river systems were also discussed.

A Development of Remote Bird Observation System Using FMCW RADAR (FMCW 레이더를 이용한 원격 조류(鳥類) 관측 시스템 개발)

  • Lee, Hee-Yong;Hwang, Hun-Gyu;Choi, Myung-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.247-256
    • /
    • 2014
  • Recently, camera and RADAR are used for more effective and accurate observation of the bird migration. In recent years, many researches on the bird migration using RADAR are undertaking and in active, thus causes the advent of "RADAR ornithology" as a new academic field. Due to the lack of accessibility, economic feasibility and mobility of weather RADAR, airport searching RADAR and tracking RADAR, Nowadays, a marine RADAR is widely used for a bird observation. In this paper, we deals with a study on development of a remote bird observation system using marine FMCW RADAR, which monitors, records and analyzes bird movement by RADAR image processing and target recognition technology. Also, we conduct first test and second test for availability of the developed system, and verify the system to apply in bird observation domain. Consequently, we figured problems out, and correct the problems to improve the system. The developed system can apply in other domains such as environment evaluation. In the future, the system needs to improve accuracy of statistics and to track migration route of bird.

A Study on the Application of Drone to Prevent the Spread of Green Tides in Lake Environment (호수 환경의 녹조 확산 방지를 위한 드론 적용 방안에 관한 연구)

  • Jin-Taek Lim;Woo-Ram Lee;Sang-Beom Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • Recently, water shortages have occurred due to climate change, and the need for water management of agricultural water has increased due to the occurrence of algal blooms in reservoirs. Existing algae prevention is operated by putting many people on site and misses the optimal spraying time due to movement through boats. In order to solve this problem, it is necessary to block contamination in advance and move within time to uniformly spray complex microorganisms uniformly. Control drones are used for pesticide spraying and can be applied to algae prevention work by utilizing control drones. In this paper, basic research for the establishment of a marine control system was conducted for application to the reservoir environment, and as one of the results, the characteristics of a drone nozzle, a core technology that can be used for control drones, were calculated. In particular, it was found that the existing agricultural control drones had a disadvantage that the concentration was non-uniform within the suggested spraying interval, and to compensate for this, nozzle positioning and nozzle spraying uniformity were calculated. Based on the experimental results, we develop a core algorithm for establishing an algal bloom monitoring system in the reservoir environment and propose a precision control technology that can be used for marine control work in the future.

Construction of High-Resolution Topographical Map of Macro-tidal Malipo beach through Integration of Terrestrial LiDAR Measurement and MBES Survey at inter-tidal zone (대조차 만리포 해안의 지상 LiDAR와 MBES를 이용한 정밀 지형/수심 측량 및 조간대 접합을 통한 정밀 지형도 작성)

  • Shim, Jae-Seol;Kim, Jin-Ah;Kim, Seon-Jeong;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • In this paper, we have constructed high-resolution topographical map of macro-tidal Malipo beach through integration of terrestrial LiDAR measurement and MBES survey data at inter-tidal zone. To acquire the enough information of inter-tidal zone, we have done terrestrial LiDAR measurement mounted on the roof of vehicle with DGPS through go-stop-scan method at the ebb tide and MBES depth surveying with tide gauge and eye staff measurement for tide correction and MSL calculation at the high tide all together. To integrate two kinds of data, we have unified the vertical coordination standard to Incheon MSL. The mean error of overlapped inter-tidal zone is about 2~6 cm. To verify the accuracy of terrestrial LiDAR, RTK-DGPS measurement have done simultaneously and the difference of Z value RMSE is about 4~7 cm. The resolution of Malipo topographical map is 50 cm and it has constructed to DEM (Digital Elevation Model) based on GIS. Now it has used as an input topography information for the storm-surge inundation prediction models. Also it will be possible to use monitoring of beach process through the long-term periodic measurement and GIS-based 3D spatial analysis calculating the erosion and deposition considering with the artificial beach transition and coastal environmental parameters.

Morphological and Genetic Species Identification in the Chironomidae Larvae Found in Tap Water Purification Plants in Jeju (제주 정수장에서 출현한 깔따구과 유충의 형태 및 유전학적 분석)

  • Kwak, Ihn-Sil;Park, Jae-Won;Kim, Won-Seok;Park, Kiyun
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.240-246
    • /
    • 2021
  • The Chironomidae is a benthic macroinvertebrate commonly found in freshwater ecosystems, along with Ephemeroptera and Trichoptera, which can be used for environmental health assessments. There are approximately 15,000 species of Chironomidae worldwide, but there are limited studies on species identification of domestic Chironomidae larvae. In the present study, we carried out species classification of the Chironomidae larvae that found in Jeju's tap water purification plants using morphological characteristics and genetic identification based on cytochrome c oxidase subunit I (COI) gene of the mitochondrial DNA. Body shape, mentum, antenna, mandible in the head capsule, and claws were observed in the larvae for morphological classification. Analysis of 17 larvae collected from faucets and fire hydrants of domestic tap water purification plants revealed the presence of two species, including 14 Orthocladius tamarutilus and 3 Paratrichocladius tammaater. These results will aid the use of the criteria information about species classification of the Chironomidae for water quality management in water purification plants and diversity monitoring of freshwater environments.

A Study on Changes in Seafarers Functions and Manpower Training by the Introduction of Maritime Autonomous Surface Ships (자율운항선박 도입에 따른 선원직능 변화와 인력양성에 관한 연구)

  • Sung-Ju Lim;Yong-John Shin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.78-80
    • /
    • 2021
  • This study is based on Degree of Recognition and AHP surveys for experts, this study investigates changes in the demand of seafarers in response to changes in the shipping industry environment in which Maritime Autonomous Surface Ships(MASS) emerge according to the application of the fourth industrial revolution technology to ships, and it looks into changes in seafarers' skills. It also analyzes and proposes a plan for cultivating seafarers accordingly. As a result of Degree of Recognition and AHP analysis, it is analyzed that a new training system is required because the current training and education system may cover the job competencies of emergency response, caution and danger navigation, general sailing, cargo handling, seaworthiness maintenance, emergency response, and ship maintenance and management, but jobs such as remote control, monitoring diagnosis, device management capability, and big data analysis require competency for unmanned and shore based control.By evaluating the importance of change factors in the duties of seafarers in Maritime Autonomous Surface Ships, this study provides information on seafarers educational institutions response strategies for nurturing seafarers and prioritization of resource allocation, etc. The importance of factors was compared and evaluated to suggest changes in the duties of seafarers and methods of nurturing seafarers according to the introduction of Maritime Autonomous Surface Ships.It is expected that this study is meaningful as it systematically derived the duties and competency factors of seafarers of Maritime Autonomous Surface Ships from a practical point of view and analyzed the perception level of each relevant expert to diagnose expert-level responses to the introduction of Maritime Autonomous Surface Ships.

  • PDF

A STUDY FOR THE DETERMINATION OF KOMPSAT I CROSSING TIME OVER KOREA (I): EXAMINATION OF SOLAR AND ATMOSPHERIC VARIABLES (다목적 실용위성 1호의 한반도 통과시각 결정을 위한 연구 (I): 태양 및 대기 변수 조사)

  • 권태영;이성훈;오성남;이동한
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.330-346
    • /
    • 1997
  • Korea Multi-Purpose Satellite I (KOMPSAT-I, the first multi-purpose Korean satellite) will be launched in the third quarter of 1999, which is operated on the sun-synchronous orbit for cartography, ocean color monitoring, and space environment monitoring. The main mission of Electro-Optical Camera(EOC) which is one of KOMPSAT-I sensors is to provide images for the production of scale maps of Korea. EOC collects panchromatic imagery with the ground sample distance of 6.6m at nadir through visible spectral band of 510~730nm. For determining KOMPSAT-I crossing time over Korea, this study examines the diurnal variation of solar and atmospheric variables that can exert a great influence on the EOC imagery. The results are as follows: 1) After 10:30 a.m. at the winter solstice, solar zenith angle is less than $70^{\circ}$ and expected flux of EOC spectral band over land for clear sky is greater than about $2.4mW/cm^2$. 2) For daytime the distribution of cloud cover (clear sky) shows minimum (maximum) at about 11:00 a.m. Although the occurrence frequency of poor visibility by fog decreases from early morning toward noon, its effect on the distribution of clear sky is negligible. From the above examination it is concluded that determining KOMPSAT-I crossing time over Korea between 10:30 and 11:30 a.m. is adequate.

  • PDF

Sensitivity Experiment of Surface Reflectance to Error-inducing Variables Based on the GEMS Satellite Observations (GEMS 위성관측에 기반한 지면반사도 산출 시에 오차 유발 변수에 대한 민감도 실험)

  • Shin, Hee-Woo;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • The information of surface reflectance ($R_{sfc}$) is important for the heat balance and the environmental/climate monitoring. The $R_{sfc}$ sensitivity to error-induced variables for the Geostationary Environment Monitoring Spectrometer (GEMS) retrieval from geostationary-orbit satellite observations at 300-500 nm was investigated, utilizing polar-orbit satellite data of the MODerate resolution Imaging Spectroradiometer (MODIS) and Ozone Mapping Instrument (OMI), and the radiative transfer model (RTM) experiment. The variables in this study can be cloud, Rayleigh-scattering, aerosol, ozone and surface type. The cloud detection in high-resolution MODIS pixels ($1km{\times}1km$) was compared with that in GEMS-scale pixels ($8km{\times}7km$). The GEMS detection was consistent (~79%) with the MODIS result. However, the detection probability in partially-cloudy (${\leq}40%$) GEMS pixels decreased due to other effects (i.e., aerosol and surface type). The Rayleigh-scattering effect in RGB images was noticeable over ocean, based on the RTM calculation. The reflectance at top of atmosphere ($R_{toa}$) increased with aerosol amounts in case of $R_{sfc}$<0.2, but decreased in $R_{sfc}{\geq}0.2$. The $R_{sfc}$ errors due to the aerosol increased with wavelength in the UV, but were constant or slightly decreased in the visible. The ozone absorption was most sensitive at 328 nm in the UV region (328-354 nm). The $R_{sfc}$ error was +0.1 because of negative total ozone anomaly (-100 DU) under the condition of $R_{sfc}=0.15$. This study can be useful to estimate $R_{sfc}$ uncertainties in the GEMS retrieval.

Seasonal and Inter-annual Variations of Sea Ice Distribution in the Arctic Using AMSR-E Data: July 2002 to May 2009 (AMSR-E 위성 데이터를 이용한 북극해빙분포의 계절 변동 및 연 변동 조사: 2002년 7월 ~ 2009년 5월)

  • Yang, Chan-Su;Na, Jae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2009
  • The Arctic environment is sensitive to change of sea-ice distribution. The increase and decrease of sea ice work to an index of globe warming progress. In order to predict the progress of hereafter earth global warming, continuous monitoring regarding a change of the sea ice area in the Arctic should be performed. The remote sensing based on an artificial satellite is most effective on the North Pole. The sea ice observation using a passive microwave sensor has been continued from 1970's. The determination of sea ice extent and ice type is one of the great successes of the passive microwave imagers. In this paper, to investigate the seasonal and inter-annual variation of sea-ice distribution we used here the sea ice data from July 2002 to May 2009 around the Arctic within $60^{\circ}N$ for the AMSR-E 12.5km sea-ice concentration, a passive microwave sensor. From an early analysis of these data, the arctic sea-ice extent has been steadily decreasing at a rate of about 3.1%, accounting for about $2{\times}10^5\;km^2$, which was calculated for the sea-ice cover reaching its minimum extent at the end of each summer. It is also revealed that this trend corresponds to a decline in the multi-year ice that is affected mainly by summer sea surface and air temperature increases. The extent of younger and thinner (first-year) ice decreased to the 2007 minimum, but rapidly recovered in 2008 and 2009 due to the dramatic loss in 2007. Seasonal variations of the sea-ice extent show significant year-to-year variation in the seasons of January-March in the Barents and Labrador seas and August-October in the region from the East Siberian and Chukchi seas to the North Pole. The spatial distribution of multi-year ice (7-year old) indicates that the perennial ice fraction has rapidly shrunk recently out of the East Siberian, Laptev, and Kara seas to the high region of the Arctic within the last seven years and the Northeast Passage could become open year-round in near future.

Temporal and Spatial Variations of Sea Surface Temperature in Jinju Bay in the South Coast of Korea (진주만 해역 수온의 시공간적 변동 특성)

  • Choo, Hyo-Sang;Yoon, Eun-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.315-326
    • /
    • 2015
  • Temporal and spatial variations of surface water temperature in Jinju Bay for the period of 2010~2011 were studied using the data from temperature monitoring buoys deployed at 17 stations in the south coast of Korea. Water temperature shows the maximum late in January and the minimum early in August. Seasonal variation of water temperatures at the north part of the bay is smaller than the middle and the south. In summer, the lowest and the highest of maximum water temperature are distributed around Jijok Channel which is located at the south of the bay. The fluctuations of water temperatures at Noryang and Daebang Channel are smaller than others because of vertical mixing caused by passage of strong tidal currents. Wind and strong currents affect on the stratification of the surface water layer near Daebang Channel. High temperatures come in frequently around the north area when eastward constant flows appear at neap tide as blowing westerly in the springtime at Noryang Channel. Spectral analyses of temperature records show significant peaks at 7~20 day periods at Noryang Channel, 7~20 day and semidiurnal at the west coast of Changsun Island and Jijok Channel and 7~20 day and diurnal at the middle of the bay. Temperature fluctuation at Noryang Channel shows high coherence and has leading phase with those at other stations in the bay. However, the phase of temperature fluctuation at Noryang Channel falls behind that at Daebang Channel. Daebang Channel has an influence on the temperature fluctuation only at the west and middle part of the bay. Cross-correlation analyses for the temperature fluctuation show that Jinju Bay could be classified into six areas; Noryang Channel, the area of convergence and divergence at the north, Daebang Channel, the west coast of Changsun Island, the mixing area at the middle of the bay and the south inside of the bay, respectively.