• Title/Summary/Keyword: Ocean Color Imager

Search Result 161, Processing Time 0.027 seconds

PRELIMINARY COMS AOCS DESIGN FOR OPTIMAL OPTICAL PAYLOADS OPERATIONS

  • Park, Young-Woong;Park, Keun-Joo;Lee, Hun-Hei;Ju, Gwang-Hyuk;Park, Bong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.290-293
    • /
    • 2006
  • COMS (Communication, Ocean and Meteorological Satellite) shall be operated with two remote sensing payloads, MI (Meteorological Imager) and GOCI (Geostationary Ocean Color Imager). Since both payloads have rotating mechanisms, the dynamic coupling between two payloads is very important considering the pointing stability during GOCI operation. In addition, COMS adopts a single solar wing to improve the image quality, which leads to the unbalanced solar pressure torque in COMS. As a result, the off-loading of the wheel momentum needs to be performed regularly (2 times per day). Since the frequent off-loading could affect MI/GOCI imaging performance, another suboptimal off-loading time needs to be considered to meet the AOCS design requirements of COMS while having margin enough in the number of thruster actuations. In this paper, preliminary analysis results on the pointing stability and the wheel off-loading time selection with respect to MI/GOCI operations are presented.

  • PDF

Improvement of Temporal Resolution for Land Surface Monitoring by the Geostationary Ocean Color Imager Data

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.25-38
    • /
    • 2016
  • With the increasing need for high temporal resolution satellite imagery for monitoring land surfaces, this study evaluated the temporal resolution of the NDVI composites from Geostationary Ocean Color Imager (GOCI) data. The GOCI is the first geostationary satellite sensor designed to provide continuous images over a $2,500{\times}2,500km^2$ area of the northeast Asian region with relatively high spatial resolution of 500 m. We used total 2,944 hourly images of the GOCI level 1B radiance data obtained during the one-year period from April 2011 to March 2012. A daily NDVI composite was produced by maximum value compositing of eight hourly images captured during day-time. Further NDVI composites were created with different compositing periods ranging from two to five days. The cloud coverage of each composite was estimated by the cloud detection method developed in study and then compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua cloud product and 16-day NDVI composite. The GOCI NDVI composites showed much higher temporal resolution with less cloud coverage than the MODIS NDVI products. The average of cloud coverage for the five-day GOCI composites during the one year was only 2.5%, which is a significant improvement compared to the 8.9%~19.3% cloud coverage in the MODIS 16-day NDVI composites.

ERROR ANALYSIS FOR GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.187-190
    • /
    • 2007
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The nonlinear radiometric model for GOCI will be validated through ground test. The GOCI radiometric calibration is based on on-board calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). In this paper, the GOCI radiometric error propagation is analyzed. The radiometric model error due to the dark current nonlinearity is analyzed as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

GOCI-IIVisible Radiometric Calibration Using Solar Radiance Observations and Sensor Stability Analysis (GOCI-II 태양광 보정시스템을 활용한 가시 채널 복사 보정 개선 및 센서 안정성 분석)

  • Minsang Kim;Myung-Sook Park;Jae-Hyun Ahn;Gm-Sil Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1541-1551
    • /
    • 2023
  • Radiometric calibration is a fundamental step in ocean color remote sensing since the step to derive solar radiance spectrum in visible to near-infrared wavelengths from the sensor-observed electromagnetic signals. Generally, satellite sensor suffers from degradation over the mission period, which results in biases/uncertainties in radiometric calibration and the final ocean products such as water-leaving radiance, chlorophyll-a concentration, and colored dissolved organic matter. Therefore, the importance of radiometric calibration for the continuity of ocean color satellites has been emphasized internationally. This study introduces an approach to improve the radiometric calibration algorithm for the visible bands of the Geostationary Ocean Color Imager-II (GOCI-II) satellite with a focus on stability. Solar Diffuser (SD) measurements were employed as an on-orbit radiometric calibration reference, to obtain the continuous monitoring of absolute gain values. Time series analysis of GOCI-II absolute gains revealed seasonal variations depending on the azimuth angle, as well as long-term trends by possible sensor degradation effects. To resolve the complexities in gain variability, an azimuth angle correction model was developed to eliminate seasonal periodicity, and a sensor degradation correction model was applied to estimate nonlinear trends in the absolute gain parameters. The results demonstrate the effects of the azimuth angle correction and sensor degradation correction model on the spectrum of Top of Atmosphere (TOA) radiance, confirming the capability for improving the long-term stability of GOCI-II data.

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI) 해수환경분석 알고리즘 개발)

  • Moon, Jeong-Eon;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Shanmugam, Palanisamy
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.189-207
    • /
    • 2010
  • Several ocean color algorithms have been developed for GOCI (Geostationary Ocean Color Imager) using in-situ bio-optical data sets. These data sets collected around the Korean Peninsula between 1998 and 2009 include chlorophyll-a concentration (Chl-a), suspended sediment concentration (SS), absorption coefficient of dissolved organic matter ($a_{dom}$), and remote sensing reflectance ($R_{rs}$) obtained from 1348 points. The GOCI Chl-a algorithm was developed using a 4-band remote sensing reflectance ratio that account for the influence of suspended sediment and dissolved organic matter. The GOCI Chl-a algorithm reproduced in-situ chlorophyll concentration better than the other algorithms. In the SeaWiFS images, this algorithm reduced an average error of 46 % in chlorophyll concentration retrieved by standard chlorophyll algorithms of SeaWiFS. For the GOCI SS algorithm, a single band was used (Ahn et al., 2001) instead of a band ratio that is commonly used in chlorophyll algorithms. The GOCI $a_{dom}$ algorithm was derived from the relationship between remote sensing reflectance band ratio ($R_{rs}(412)/R_{rs}(555)$) and $a_{dom}(\lambda)$). The GOCI Chl-a fluorescence and GOCI red tide algorithms were developed by Ahn and Shanmugam (2007) and Ahn and Shanmugam (2006), respectively. If the launch of GOCI in June 2010 is successful, then the developed algorithms will be analyzed in the GOCI CAL/VAL processes, and improved by incorporating more data sets of the ocean optical properties data that will be obtained from waters around the Korean Peninsula.

GOCI-II Capability of Improving the Accuracy of Ocean Color Products through Fusion with GK-2A/AMI (GK-2A/AMI와 융합을 통한 GOCI-II 해색 산출물 정확도 개선 가능성)

  • Lee, Kyeong-Sang;Ahn, Jae-Hyun;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1295-1305
    • /
    • 2021
  • Satellite-derived ocean color products are required to effectively monitor clear open ocean and coastal water regions for various research fields. For this purpose, accurate correction of atmospheric effect is essential. Currently, the Geostationary Ocean Color Imager (GOCI)-II ground segment uses the reanalysis of meteorological fields such as European Centre for Medium-Range Weather Forecasts (ECMWF) or National Centers for Environmental Prediction (NCEP) to correct gas absorption by water vapor and ozone. In this process, uncertainties may occur due to the low spatiotemporal resolution of the meteorological data. In this study, we develop water vapor absorption correction model for the GK-2 combined GOCI-II atmospheric correction using Advanced Meteorological Imager (AMI) total precipitable water (TPW) information through radiative transfer model simulations. Also, we investigate the impact of the developed model on GOCI products. Overall, the errors with and without water vapor absorption correction in the top-of-atmosphere (TOA) reflectance at 620 nm and 680 nm are only 1.3% and 0.27%, indicating that there is no significant effect by the water vapor absorption model. However, the GK-2A combined water vapor absorption model has the large impacts at the 709 nm channel, as revealing error of 6 to 15% depending on the solar zenith angle and the TPW. We also found more significant impacts of the GK-2 combined water vapor absorption model on Rayleigh-corrected reflectance at all GOCI-II spectral bands. The errors generated from the TOA reflectance is greatly amplified, showing a large error of 1.46~4.98, 7.53~19.53, 0.25~0.64, 14.74~40.5, 8.2~18.56, 5.7~11.9% for from 620 nm to 865 nm, repectively, depending on the SZA. This study emphasizes the water vapor correction model can affect the accuracy and stability of ocean color products, and implies that the accuracy of GOCI-II ocean color products can be improved through fusion with GK-2A/AMI.

An Efficient Data Processing Method to Improve the Geostationary Ocean Color Imager (GOCI) Data Service (천리안 해양관측위성의 배포서비스 향상을 위한 자료 처리 효율화 방안 연구)

  • Yang, Hyun;Oh, Eunsong;Han, Tai-Hyun;Han, Hee-Jeong;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • We proposed and verified the methods to maintain data qualities as well as to reduce data volume for the Geostationary Ocean Color Imager (GOCI), the world's first ocean color sensor operated in geostationary orbit. For the GOCI level-2 data, 92.9% of data volume could be saved by only the data compression. For the GOCI level-1 data, however, just 20.7% of data volume could be saved by the data compression therefore another approach was required. First, we found the optimized number of bits per a pixel for the GOCI level-1 data from an idea that the quantization bit for the GOCI (i.e. 12 bit) was less than the number of bits per a pixel for the GOCI level-1 data (i.e. 32 bit). Experiments were conducted using the $R^2$ and the Modulation Transfer Function (MTF). It was quantitatively revealed that the data qualities were maintained although the number of bits per a pixel was reduced to 14. Also, we performed network simulations using the Network Simulator 2 (Ns2). The result showed that 57.7% of the end-toend delay for a GOCI level-1 data was saved when the number of bits per a pixel was reduced to 14 and 92.5% of the end-to-end delay for a GOCI level-2 data was saved when 92.9% of the data size was reduced due to the compression.

Detection technique of Red Tide Using GOCI Level 2 Data (GOCI Level 2 Data를 이용한 적조탐지 기법 연구)

  • Bak, Su-Ho;Kim, Heung-Min;Hwang, Do-Hyun;Yoon, Hong-Joo;Seo, Won-Chan
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.673-679
    • /
    • 2016
  • This study propose a new method to detect Cochlodinium polykrikoides red tide occurring in South Sea of Korea using Water-leaving Radiance data and Absorption Coefficients data of Geostationary Ocean Color Imager (GOCI). C. polykrikoides were analyzed and the irradiance and light emission characteristics of the wavelength range from 412 nm to 555 nm were confirmed. The detection technique proposed in this study detects the red tide occurring in the optically complex South Sea. Based on these results, it can be used for future red tide prevention.

Examination of Cross-calibration Between OSMI and SeaWiFS: Comparison of Ocean Color Products

  • Lee, Sun-Gu;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.209-215
    • /
    • 2002
  • Much effort has been made in the radiometric calibration of the ocean scanning multispectral imager (OSMI) since after the successful launch of KOMPSAT-1 in 1999. A series of calibration coefficients for OSMI detectors were obtained in collaboration with the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary (SIMBIOS) project office. In this study, we compare the OSMI level-2 products (e.g., chlorophyll-a concentration) calculated from the NASA cross-calibration coefficients with the SeaWiFS counterparts. Sample study areas are some of diagonostic data sites recommended by the SIMBIOS working group. We will present the preliminary results of this comparative study.

  • PDF

Examination of Cross-calibration Between OSMI and SeaWiFS: Comparison of Ocean Color Products

  • Kim, Yong-Seung;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.201-208
    • /
    • 2003
  • Much effort has been made in the radiometric calibration of the ocean scanning multispectral imager (OSMI) since after the successful launch of KOMPSAT-1 in 1999. A series of calibration coefficients for OSMI detectors were obtained in collaboration with the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary (SIMBIOS) project office. In this study, we ompare the OSMI level-2 products (e.g., chorophyll-a concentration) calculated from the NASA cross-calibration coefficients with the SeaWiFS counterparts. Sample study areas are some of diagonostic data sites recommended by the SIMBIOS working group. Results of this study show that the OSMl-derived chlorophyll-a concentration agrees well with the SeaWiFS counterpart in Case 1 water; however, differences become larger in Case 2 water.