• Title/Summary/Keyword: Obstacle analysis

Search Result 484, Processing Time 0.02 seconds

An Analysis of Factors Affecting Vertical and Horizontal Obstacle Crossing in Independently Ambulatory Children With Spastic Cerebral Palsy (독립보행이 가능한 강직성 뇌성마비 아동들의 수직 및 수평 장애물 통과에 영향을 미치는 요인 분석)

  • Lee, Su-Jin;Oh, Duck-Won
    • Physical Therapy Korea
    • /
    • v.18 no.3
    • /
    • pp.16-25
    • /
    • 2011
  • This study aimed to evaluate factors related to the ability of ambulatory patients with cerebral palsy (CP) to walk over vertical and horizontal obstacles. Twenty patients with spastic CP who were able to walk independently for at least 10 m with or without walking devices were recruited for the study. Participants were required to walk over small obstacles (1, 4, and 8 cm in height or width; total of 6 conditions). A 'fail' was recorded when either the lower limbs or the walking device contacted the obstacle. Linear regression analyses were used to determine the effects of age, sex, walking devices, eyeglasses, subtype (hemiplegia or diplegia), ankle foot orthoses, functional level, and score of body mass index on the ability of obstacle crossing. Fifteen participants (75%) failed to adequately clear the foot or walking device over obstacles in at least 1 condition. The chance of failure in crossing vertical obstacle was affected by the use of ankle foot orthoses, eyeglasses, gender, and CP subtype (p<.05). The failure rate crossing horizontal obstacle was affected by CP subtype. These findings suggest that rehabilitation procedures should (1) consider the clinical characteristics of patients in order to prepare them to be more independent while performing daily activities, and (2) incorporate environmental conditions that patients encounter at home and in the community.

Near-field Performance Analysis of LW-TLM Antenna for propagation obstacle (장파대역 TLM 안테나의 전파 장애물에 의한 근거리장 성능 분석)

  • Kim, Young-Wan
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1064-1068
    • /
    • 2020
  • For LW-TLM antenna of 65 kHz, Near-field propagation characteristics due to wave propagation obstacle are analyzed in this paper. The simulation modeling for propagation effects are based on the model of actual LW-TLM antenna which utilizes the frequency of 65 kHz, and the model expressed as propagation obstacle at a mountain height and a proximity of antenna and mountain. The near-field performance are analyzed based on the parameters of simulation model. In case of a normal mountain height and distance between the adjacent mountain and antenna site, a field strength change of about 1.7 dB has occurred. Above the constant distance of propagation obstacle and antenna, the wave propagation characteristics of disregarding the effects of propagation obstacle are shown. The results of this paper can be used to design and build a transmitting antenna site with 65 kHz operating frequency.

The Experimental and Numerical Study on Spin-up Flows in a Rectangular Container with an Internal Cylindrical Obstacle (원형 실린더가 있는 직사각형 욕기내의 스핀-업 유동에 관한 실험 및 수치해석)

  • Park, Jae-Hyun;Suh, Young-Kweon;Kim, Sung-Kyun;Son, Young-Rak
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1765-1770
    • /
    • 2003
  • This paper describes a study of the spin-up of a free-surface fluid in a rectangular container in which an internal cylindrical obstacle is mounted. Experiments and numerical analysis have been carried out for a variety of obstacle position. Increase in the speed of background rotation and near wall position of cylindrical obstacle results in the complex flow structures. Numerical and experimental results agree well with each other and the Ekman-pumping model is also applied to this flow.

  • PDF

Analysis of Obstacle Gait Using Spatio-Temporal and Foot Pressure Variables in Children with Autism (자폐성 장애 아동의 시공간 및 압력분포 변인을 통한 장애물보행 분석)

  • Kim, Mi-Young;Choi, Bum-Kwon;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.459-466
    • /
    • 2011
  • The purpose of this study was to analyze of obstacle gait using spatio-temporal and foot pressure variables in children with autism. Fifteen children with autism and fifteen age-matched controls participated in the study. Spatio-temporal and foot pressure variables was investigated using GAITRite pressure sensor system. Each footprint was divided into 12 equal trapezoids and after that the hindfoot, midfoot and forefoot analysis was developed. Independent t-test was applied to compare the gait variables between the groups. The results showed that the autism group were significantly decreased in velocity, cadence, cycle and swing time compared to the control group. The autism group were significantly increased in step width and toe out angle compared to the control group. The autism group were significantly increased at midfoot and forefoot of lateral part of footprint and forefoot of medial part of footprint in the peak time compared to the control group. The autism group were significantly increased at midfoot and hindfoot in $P^*t$, at midfoot in active area, and at hindfoot in peak pressure compared to the control group. In conclusion, the children with autism showed abnormal obstacle gait characteristics due to muscle hypotonia, muscle rigidity, akinesia, bradykinesia and postural control impairments.

Numerical Performance Analysis of Obstacle Avoidance Method for a Mobile Robot (이동 로봇 장애물 회피 방법의 수치적 성능 분석)

  • Kim, Kwang-Jin;Ko, Nak-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.401-407
    • /
    • 2012
  • This paper analyzes performance of major obstacle avoidance methods. For the analysis, numerical performance indexes are proposed: motion distance to goal point, motion time, distance to obstacles, and smoothness of the motion. Especially, the index of smoothness measures efficiency of the motion using the angular acceleration and jerk of the robot heading. Four major obstacle avoidance methods are compared in terms of the performance indexes. The four methods are artificial potential field(APF) method, elastic force(EF) method, APF with virtual distance, and EF with virtual distance. Through simulation, the four methods are compared and features of the methods are explored.

Static Analysis and Experimentation on Obstacle-overcoming for a Novel Field Robotic Platform using Flip Motion (Flip 모션을 이용한 신개념 필드 로봇 플랫폼의 큰 장애물 등반 정적 해석 및 실험)

  • Seo, ByungHoon;Shin, Myeongseok;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1067-1072
    • /
    • 2014
  • The ability to overcome obstacles is necessary for field robots for various applications including the ability to climb stairs. While much research has been performed focusing on overcoming obstacles, the resulting robots do not have sufficient ability to overcome obstacles such as stairs. In this research, the purpose is to overcome relatively large obstacles by flipping locomotion through the modification of the stair climbing robotic platform of the previous research. We propose two scenarios to overcome large obstacles: a rear wheel driving system and an elevation system using a ball screw. The research is performed based on static analyses on obstacle-climbing. As the simulation results indicate, we determined the optimal posture of the robot for climbing obstacles for rear wheel driving. Also, an elevation system is analyzed for obstacle climbing. Between the two scenarios an elevation system is determined to reduce the operating torque of the actuator, and the prototype was recently assembled. The climbing ability of the robotic platform is verified. We expect the application area for this robotic platform will be in accident areas of nuclear power plants.

Three-Dimensional Numerical Analysis on Recirculation Generated by Obstacles Around a Cooling Tower (냉각탑 주위 장애물에 의한 재순환 현상에 관한 3차원 수치해석)

  • Choi, Young-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.225-234
    • /
    • 2009
  • The present study has been preformed to investigate the effect of obstacles around a cooling tower with air-guide to prevent recirculation. The external region as well as the cooling tower are included in the computational domain to analyze the flow phenomena around a cooling tower accurately. Three-dimensional analysis is performed using the finite volume method with non-orthogonal and unstructured grid system. The standard turbulence model is used to consider the turbulence effect. In order to investigate the recirculation phenomena, flow and temperature fields are calculated with the distance between cooling tower and obstacle, the allocated geometrical type and the air-guide. The moisture fraction rates decrease with increment of the distance between cooling tower and obstacle. The effect of air-guide to reduce the mean recirculation rate is obviously observed.

Numerical Simulation of Pipe Flow with an Obstacle by applying Turbulent Models (난류모형을 적용한 장애물이 있는 파이프내의 유동장 수치시뮬레이션)

  • Kwag Seung- Hyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.523-528
    • /
    • 2005
  • The flow analysis is made to simulate the turbulent flow in the pipe with an obstacle. The models used are k-$\epsilon$, k-$\omega$, Spalart-Allmaras and Reynolds. The structured grid is used for the simulation The velocity vector, the pressure contour, the change of residual along the iteration number and the dynamic head are simulated for the comparison of four example cases. For the analysis, the commercial code is used.

A Numerical Analysis of Turbulent Flow Field and Contamination Behavior in a Three Dimensional Room with Obstacle (장애물의 영향에 의한 3차원 실내공간의 난류유동 및 오염물질 거동의 수치해석)

  • Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.45-57
    • /
    • 1996
  • Flow characteristics and contamination behavior in a three-dimensional room with the desk-type obstacle have been investigated numerically by the k-${\varepsilon}$ two equation turbulence model. The room model has one supply opening on the ceiling and two exhaust openings on the side walls. Thirty six sets of calculation have been performed for twelve contamination sources of $1{\times}10^{-4}kg_c/(m^3{\cdot}s)$ strength at different inlet velocities(0.1, 1, 10m/s). This study can conclude that the source points of contaminant are located near the obstacle edge of Z-axis, at which the maximum contaminant diffusion fields are occured.

  • PDF

A New Approach of BK products of Fuzzy Relations for Obstacle Avoidance of Autonomous Underwater Vehicles

  • Bui, Le-Diem;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.135-141
    • /
    • 2004
  • This paper proposes a new heuristic search technique for obstacle avoidance of autonomous underwater vehicles equipped with a looking ahead obstacle avoidance sonar. We suggest the fuzzy relation between the sonar sections and the properties of real world environment. Bandler and Kohout's fuzzy relational method are used as the mathematical implementation for the analysis and synthesis of relations between the partitioned sections of sonar over the real-world environmental properties. The direction of the section with optimal characteristics would be selected as the successive heading of AUVs for obstacle avoidance. For the technique using in this paper, sonar range must be partitioned into multi equal sections; membership functions of the properties and the corresponding fuzzy rule bases are estimated heuristically. With the two properties Safety, Remoteness and sonar range partitioned in seven sections, this study gives the good result that enables AUVs to navigate through obstacles in the optimal way to goal.