• 제목/요약/키워드: Observers

검색결과 643건 처리시간 0.027초

Using Practice Context Models to Knowledge Management in Proof-of-Concept Activities: A Contribution of Knowledge Networks and Percolation Theory

  • Neto, Antonio Jose Rodrigues;Borges, Maria Manuel;Roque, Licinio
    • Journal of Information Science Theory and Practice
    • /
    • 제9권1호
    • /
    • pp.1-23
    • /
    • 2021
  • This study introduces novel research using Practice Context Models supported by Knowledge Networks and Percolation Theory with the aim to contribute to knowledge management in Proof-of-Concept (PoC) activities. The authors envision this proposal as a potential instrument to identify network structures based on a percolation (propagation) threshold and to analyze the importance of nodes (e.g., practitioners, practices, competencies, movements, and scenarios) during the percolation of knowledge in PoC activities. After thirty months immersed in the natural PoC habitat, acting as observers and practitioners, and supported by an ethnographic exercise and a designer-research mindset, the authors identified the production of meaning in PoC activities occurring in a hermeneutic circle characterized by the presence of several knowledge networks; thus, discovering the 'natural knowledge' in PoC as a spectrum of cognitive development spread throughout its network, as each node could produce and disseminate certain knowledge that flows and influences other nodes. Therefore, this research presents the use of Practice Context Models 'connected' to Knowledge Networks and Percolation Theory as a potential and feasible proposal to be built using the attribution of values (weights) to the nodes (e.g., practitioners, practices, competencies, movements, scenarios, and also knowledge) in the context of PoC with the aim to allow the players (e.g., PoC practitioners) to have more flexibility in building alliances with other players (new nodes); that is, focusing on those nodes with higher value (focus on quality) in collaboration networks, i.e., alliances (connections) with the aim to contribute to knowledge management in the context of PoC.

Lifetime Escalation and Clone Detection in Wireless Sensor Networks using Snowball Endurance Algorithm(SBEA)

  • Sathya, V.;Kannan, Dr. S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1224-1248
    • /
    • 2022
  • In various sensor network applications, such as climate observation organizations, sensor nodes need to collect information from time to time and pass it on to the recipient of information through multiple bounces. According to field tests, this information corresponds to most of the energy use of the sensor hub. Decreasing the measurement of information transmission in sensor networks becomes an important issue.Compression sensing (CS) can reduce the amount of information delivered to the network and reduce traffic load. However, the total number of classification of information delivered using pure CS is still enormous. The hybrid technique for utilizing CS was proposed to diminish the quantity of transmissions in sensor networks.Further the energy productivity is a test task for the sensor nodes. However, in previous studies, a clustering approach using hybrid CS for a sensor network and an explanatory model was used to investigate the relationship between beam size and number of transmissions of hybrid CS technology. It uses efficient data integration techniques for large networks, but leads to clone attacks or attacks. Here, a new algorithm called SBEA (Snowball Endurance Algorithm) was proposed and tested with a bow. Thus, you can extend the battery life of your WSN by running effective copy detection. Often, multiple nodes, called observers, are selected to verify the reliability of the nodes within the network. Personal data from the source centre (e.g. personality and geographical data) is provided to the observer at the optional witness stage. The trust and reputation system is used to find the reliability of data aggregation across the cluster head and cluster nodes. It is also possible to obtain a mechanism to perform sleep and standby procedures to improve the life of the sensor node. The sniffers have been implemented to monitor the energy of the sensor nodes periodically in the sink. The proposed algorithm SBEA (Snowball Endurance Algorithm) is a combination of ERCD protocol and a combined mobility and routing algorithm that can identify the cluster head and adjacent cluster head nodes.This algorithm is used to yield the network life time and the performance of the sensor nodes can be increased.

시선추적장치(Eye Tracking)를 활용한 인공지능(AI) 창작물과 사람의 창작물에 대한 시지각 비교 연구 (Comparative Study on Visual and Perceptual Difference Towards the Artworks of Human and Artificial Intelligence Using Eye-Tracking)

  • 황미경;주이모;박민희;권만우
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.374-381
    • /
    • 2022
  • This study analyzes the visual perceptual difference of observers in the artworks created by human artists and artificial intelligence(AI) through eye-tracking. More specifically, the study analyzes the degree of visual attention through a fixation experiment on non-linguistic sources such as the formation and expression of artworks. As a result of this study, the subjects had guessed that one out of four artworks were created by AI (in actuality, 61.1% of the artworks were created by The Next Rembrandt). This demonstrates that most of the subjects hardly recognized the difference between the artwork of human artists and AI. From the comparative analysis of visual perceptual differences found through eye-tracking, more visual attention was found to be demanded for catching details of more stimulating visuals compared to less stimulating visuals. In the gender difference analysis, both of the female and male subjects were likely to stare more intently at the flowers of still-life paintings (Deep Dream & Vincent Van Gogh) while the eyes of a portrait painting (Rembrandt & The Next Rembrandt); this demonstrates no significant differences in gender. Various opinions on AI and art creation from different perspectives arose, therefore, this research is meaningful in a way that it suggests an objective examination through experiments with an artistic perspective.

Comparison of dorsal and medial arthroscopic approach to canine coxofemoral joint: a cadaveric study

  • Sangjun Oh;Jinsu Kang;Namsoo Kim;Suyoung Heo
    • Journal of Veterinary Science
    • /
    • 제24권1호
    • /
    • pp.12.1-12.10
    • /
    • 2023
  • Background: Arthroscopic exploration of ventromedial part of canine coxofemoral joint is limited in conventional dorsal approach. Objectives: We evaluated the efficacy of a medial arthroscopic approach to the coxofemoral joint of dogs by analyzing the joint visible area and performing a safety analysis. Methods: Arthroscopic approaches to the coxofemoral joint were made in five cadavers using a traditional (dorsal) and novel (medial) approach. Three observers scored the visible area of images and videos of the acetabulum and femur. A safety analysis was performed via dissection of the medial hind limb. The distance between neurovascular structures and arthroscopic portals was measured. Results: The acetabulum was more visible in the dorsal than in the medial approach, with mean visualization scores of 16 ± 0.00 and 11.83 ± 1.26, respectively. The medioventral side of the femur was significantly more visible in the medial than in the dorsal approach, with mean visualization scores of 3.9 ± 0.99 and 6.93 ± 0.58, respectively. Safety analysis confirmed the medial portal site was safe, provided that the surgeon has comprehensive knowledge of the joint. The minimum distance from the arthroscopic medial portals to the nearest neurovascular structures was 2.5 mm. Conclusions: A medial arthroscopic approach to the canine coxofemoral joint has potential clinical application. Dorsal and medial approaches differ significantly and have distinct purposes. The medial approach is useful to access the ventromedial joint, making it an eligible diagnostic method for an arthroscopic evaluation of this area.

Three-Dimensional Evaluation of Skeletal Stability following Surgery-First Orthognathic Approach: Validation of a Simple and Effective Method

  • Nabil M. Mansour;Mohamed E. Abdelshaheed;Ahmed H. El-Sabbagh;Ahmed M. Bahaa El-Din;Young Chul Kim;Jong-Woo Choi
    • Archives of Plastic Surgery
    • /
    • 제50권3호
    • /
    • pp.254-263
    • /
    • 2023
  • Background The three-dimensional (3D) evaluation of skeletal stability after orthognathic surgery is a time-consuming and complex procedure. The complexity increases further when evaluating the surgery-first orthognathic approach (SFOA). Herein, we propose and validate a simple time-saving method of 3D analysis using a single software, demonstrating high accuracy and repeatability. Methods This retrospective cohort study included 12 patients with skeletal class 3 malocclusion who underwent bimaxillary surgery without any presurgical orthodontics. Computed tomography (CT)/cone-beam CT images of each patient were obtained at three different time points (preoperation [T0], immediately postoperation [T1], and 1 year after surgery [T2]) and reconstructed into 3D images. After automatic surface-based alignment of the three models based on the anterior cranial base, five easily located anatomical landmarks were defined to each model. A set of angular and linear measurements were automatically calculated and used to define the amount of movement (T1-T0) and the amount of relapse (T2-T1). To evaluate the reproducibility, two independent observers processed all the cases, One of them repeated the steps after 2 weeks to assess intraobserver variability. Intraclass correlation coefficients (ICCs) were calculated at a 95% confidence interval. Time required for evaluating each case was recorded. Results Both the intra- and interobserver variability showed high ICC values (more than 0.95) with low measurement variations (mean linear variations: 0.18 mm; mean angular variations: 0.25 degree). Time needed for the evaluation process ranged from 3 to 5 minutes. Conclusion This approach is time-saving, semiautomatic, and easy to learn and can be used to effectively evaluate stability after SFOA.

Proposal for a Sensory Integration Self-system based on an Artificial Intelligence Speaker for Children with Developmental Disabilities: Pilot Study

  • YeJin Wee;OnSeok Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1216-1233
    • /
    • 2023
  • Conventional occupational therapy (OT) is conducted under the observation of an occupational therapist, and there are limitations in measuring and analyzing details such as degree of hand tremor and movement tendency, so this important information may be lost. It is therefore difficult to identify quantitative performance indicators, and the presence of observers during performance sometimes makes the subjects feel that they have to achieve good results. In this study, by using the Unity3D and artificial intelligence (AI) speaker, we propose a system that allows the subjects to steadily use it by themselves and helps the occupational therapist objectively evaluate through quantitative data. This system is based on the OT of the sensory integration approach. And the purpose of this system is to improve children's activities of daily living by providing various feedback to induce sensory integration, which allows them to develop the ability to effectively use their bodies. A dynamic OT cognitive assessment tool for children used in clinical practice was implemented in Unity3D to create an OT environment of virtual space. The Leap Motion Controller allows users to track and record hand motion data in real time. Occupational therapists can control the user's performance environment remotely by connecting Unity3D and AI speaker. The experiment with the conventional OT tool and the system we proposed was conducted. As a result, it was found that when the system was performed without an observer, users can perform spontaneously and several times feeling ease and active mind.

Effect of cone-beam computed tomography metal artefact reduction on incomplete subtle vertical root fractures

  • Andrea Huey Tsu Wang;Francine Kuhl Panzarella;Carlos Eduardo Fontana;Jose Luiz Cintra Junqueira;Carlos Eduardo da Silveira Bueno
    • Imaging Science in Dentistry
    • /
    • 제53권1호
    • /
    • pp.11-19
    • /
    • 2023
  • Purpose: This study compared the accuracy of detection of incomplete vertical root fractures (VRFs) in filled and unfilled teeth on cone-beam computed tomography images with and without a metal artefact reduction (MAR) algorithm. Materials and Methods: Forty single-rooted maxillary premolars were selected and, after endodontic instrumentation, were categorized as unfilled teeth without fractures, filled teeth without fractures, unfilled teeth with fractures, or filled teeth with fractures. Each VRF was artificially created and confirmed by operative microscopy. The teeth were randomly arranged, and images were acquired with and without the MAR algorithm. The images were evaluated with OnDemand software (Cybermed Inc., Seoul, Korea). After training, 2 blinded observers each assessed the images for the presence and absence of VRFs 2 times separated by a 1-week interval. P-values<0.05 were considered to indicate significance. Results: Of the 4 protocols, unfilled teeth analysed with the MAR algorithm had the highest accuracy of incomplete VRF diagnosis (0.65), while unfilled teeth reviewed without MAR were associated with the least accurate diagnosis (0.55). With MAR, an unfilled tooth with an incomplete VRF was 4 times more likely to be identified as having an incomplete VRF than an unfilled tooth without this condition, while without MAR, an unfilled tooth with an incomplete VRF was 2.28 times more likely to be identified as having an incomplete VRF than an unfilled tooth without this condition. Conclusion: The use of the MAR algorithm increased the diagnostic accuracy in the detection of incomplete VRF on images of unfilled teeth.

Deep learning for the classification of cervical maturation degree and pubertal growth spurts: A pilot study

  • Mohammad-Rahimi, Hossein;Motamadian, Saeed Reza;Nadimi, Mohadeseh;Hassanzadeh-Samani, Sahel;Minabi, Mohammad A. S.;Mahmoudinia, Erfan;Lee, Victor Y.;Rohban, Mohammad Hossein
    • 대한치과교정학회지
    • /
    • 제52권2호
    • /
    • pp.112-122
    • /
    • 2022
  • Objective: This study aimed to present and evaluate a new deep learning model for determining cervical vertebral maturation (CVM) degree and growth spurts by analyzing lateral cephalometric radiographs. Methods: The study sample included 890 cephalograms. The images were classified into six cervical stages independently by two orthodontists. The images were also categorized into three degrees on the basis of the growth spurt: pre-pubertal, growth spurt, and post-pubertal. Subsequently, the samples were fed to a transfer learning model implemented using the Python programming language and PyTorch library. In the last step, the test set of cephalograms was randomly coded and provided to two new orthodontists in order to compare their diagnosis to the artificial intelligence (AI) model's performance using weighted kappa and Cohen's kappa statistical analyses. Results: The model's validation and test accuracy for the six-class CVM diagnosis were 62.63% and 61.62%, respectively. Moreover, the model's validation and test accuracy for the three-class classification were 75.76% and 82.83%, respectively. Furthermore, substantial agreements were observed between the two orthodontists as well as one of them and the AI model. Conclusions: The newly developed AI model had reasonable accuracy in detecting the CVM stage and high reliability in detecting the pubertal stage. However, its accuracy was still less than that of human observers. With further improvements in data quality, this model should be able to provide practical assistance to practicing dentists in the future.

인공지능 기반 어류 분류 및 무게 추정 시스템에 관한 연구 (A Study on the AI-based Fish Classification and Weight Estimation System)

  • 고준혁;오동협;이지원;임태호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.229-232
    • /
    • 2022
  • 최근 우리나라 연근해어업 생산이 줄어들고 있다. 2016년도 연근해어업 생산량이 44년 만에 100만톤 이하로 내려간 이후 회복이 되지 않고 줄어들고 있다. 이와 같은 수산자원 감소에 대응하기 위해 국제적으로 수산자원관리를 위하여 TAC(총허용어획량) 제도를 시행하고 있다. 우리나라는 1999년부터 TAC 제도를 도입하여 자원관리를 수행하고 있다. 본 논문에서는 TAC 제도 시행을 위해서 필수적인 육상 옵서버의 수산자원 조사에 활용이 가능한 인공지능 기반 어류 분류 및 무게 추정 시스템을 제안한다. 이 시스템은 라이다 센서가 탑재된 단말기를 이용하여 어류의 체장, 체고를 자동 측정 및 사진 촬영을 수행하는 앱과 클라우드 서버로 구성된다. 클라우드 서버에는 CNN 기반의 efficientnet 모델을 이용하여 어류 분류를 수행하고 자동 측정된 체장, 체고 정보를 이용하여 어류의 무게를 예측한다. 본 시스템을 이용하면 기존에 육상 옵서버가 위판장에서 줄자와 무게 측정 후 수기로 작성하는 기존 방식을 개선할 수 있다.

  • PDF

A cone-beam computed tomography study of the prevalence and location of the second mesiobuccal root canal in maxillary molars

  • Seong-Ju Lee ;Eun-Hye Lee ;Se-Hee Park ;Kyung-Mo Cho ;Jin-Woo Kim
    • Restorative Dentistry and Endodontics
    • /
    • 제45권4호
    • /
    • pp.46.1-46.8
    • /
    • 2020
  • Objectives: This study aimed to investigate the incidence and location of the second mesiobuccal root (MB2) canal in maxillary molars with the aid of various measuring points and lines using cone-beam computed tomography (CT). Materials and Methods: A total of 205 images of patients who underwent cone-beam CT examinations between 2011 and 2015 as part of their dental diagnosis and treatment were included. There were 76 images of the maxillary first molar and 135 images of the maxillary second molar. Canal orifices were detected at -1 mm from the top of the pulpal floor on cone-beam CT images. Image assessment was performed by 2 observers in reformatted image planes using software. Assessments included measurement of the distance between the MB1 and MB2 canals, and the angles between the lines connecting the MB1-MB2 and distobuccal (DB)-palatal (P) canals. The data were analyzed using the student's t-test. Results: The prevalence of the MB2 canal was 86.8% in the first molar and 28.9% in the second molar. The angle between the lines connecting the MB1-MB2 and DB-P canals was 2.3° ± 5.7° in the first molar and -3.95° ± 7.73° in the second molar. The distance between the MB1 and MB2 canals was 2.1 ± 0.44 mm in the first molar and 1.98 ± 0.42 mm in the second molar. Conclusions: The angles between the lines connecting the MB1-MB2 and DB-P canals was almost parallel. These findings may aid in the prediction of the location of the MB2 canal orifice.