• 제목/요약/키워드: Observation error covariance

검색결과 15건 처리시간 0.023초

한국형수치예보모델 자료동화에서 위성 복사자료 관측오차 진단 및 영향 평가 (Diagnostics of Observation Error of Satellite Radiance Data in Korean Integrated Model (KIM) Data Assimilation System)

  • 김혜영;강전호;권인혁
    • 대기
    • /
    • 제32권4호
    • /
    • pp.263-276
    • /
    • 2022
  • The observation error of satellite radiation data that assimilated into the Korean Integrated Model (KIM) was diagnosed by applying the Hollingsworth and Lönnberg and Desrozier techniques commonly used. The magnitude and correlation of the observation error, and the degree of contribution for the satellite radiance data were calculated. The observation errors of the similar device, such as Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit-A shows different characteristics. The model resolution accounts for only 1% of the observation error, and seasonal variation is not significant factor, either. The observation error used in the KIM is amplified by 3-8 times compared to the diagnosed value or standard deviation of first-guess departures. The new inflation value was calculated based on the correlation between channels and the ratio of background error and observation error. As a result of performing the model sensitivity evaluation by applying the newly inflated observation error of ATMS, the error of temperature and water vapor analysis field were decreased. And temperature and water vapor forecast field have been significantly improved, so the accuracy of precipitation prediction has also been increased by 1.7% on average in Asia especially.

앙상블 칼만 필터를 이용한 태풍 우쿵 (200610) 예측과 앙상블 민감도 분석 (Typhoon Wukong (200610) Prediction Based on The Ensemble Kalman Filter and Ensemble Sensitivity Analysis)

  • 박종임;김현미
    • 대기
    • /
    • 제20권3호
    • /
    • pp.287-306
    • /
    • 2010
  • An ensemble Kalman filter (EnKF) with Weather Research and Forecasting (WRF) Model is applied for Typhoon Wukong (200610) to investigate the performance of ensemble forecasts depending on experimental configurations of the EnKF. In addition, the ensemble sensitivity analysis is applied to the forecast and analysis ensembles generated in EnKF, to investigate the possibility of using the ensemble sensitivity analysis as the adaptive observation guidance. Various experimental configurations are tested by changing model error, ensemble size, assimilation time window, covariance relaxation, and covariance localization in EnKF. First of all, experiments using different physical parameterization scheme for each ensemble member show less root mean square error compared to those using single physics for all the forecast ensemble members, which implies that considering the model error is beneficial to get better forecasts. A larger number of ensembles are also beneficial than a smaller number of ensembles. For the assimilation time window, the experiment using less frequent window shows better results than that using more frequent window, which is associated with the availability of observational data in this study. Therefore, incorporating model error, larger ensemble size, and less frequent assimilation window into the EnKF is beneficial to get better prediction of Typhoon Wukong (200610). The covariance relaxation and localization are relatively less beneficial to the forecasts compared to those factors mentioned above. The ensemble sensitivity analysis shows that the sensitive regions for adaptive observations can be determined by the sensitivity of the forecast measure of interest to the initial ensembles. In addition, the sensitivities calculated by the ensemble sensitivity analysis can be explained by dynamical relationships established among wind, temperature, and pressure.

Precise Orbit Determination Based on the Unscented Transform for Optical Observations

  • Hwang, Hyewon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권4호
    • /
    • pp.249-264
    • /
    • 2019
  • In this study, the precise orbit determination (POD) software is developed for optical observation. To improve the performance of the estimation algorithm, a nonlinear batch filter, based on the unscented transform (UT) that overcomes the disadvantages of the least-squares (LS) batch filter, is utilized. The LS and UT batch filter algorithms are verified through numerical simulation analysis using artificial optical measurements. We use the real optical observation data of a low Earth orbit (LEO) satellite, Cryosat-2, observed from optical wide-field patrol network (OWL-Net), to verify the performance of the POD software developed. The effects of light travel time, annual aberration, and diurnal aberration are considered as error models to correct OWL-Net data. As a result of POD, measurement residual and estimated state vector of the LS batch filter converge to the local minimum when the initial orbit error is large or the initial covariance matrix is smaller than the initial error level. However, UT batch filter converges to the global minimum, irrespective of the initial orbit error and the initial covariance matrix.

Bootstrap Confidence Intervals of Classification Error Rate for a Block of Missing Observations

  • Chung, Hie-Choon
    • Communications for Statistical Applications and Methods
    • /
    • 제16권4호
    • /
    • pp.675-686
    • /
    • 2009
  • In this paper, it will be assumed that there are two distinct populations which are multivariate normal with equal covariance matrix. We also assume that the two populations are equally likely and the costs of misclassification are equal. The classification rule depends on the situation when the training samples include missing values or not. We consider the bootstrap confidence intervals for classification error rate when a block of observation is missing.

서남해안 관측자료를 활용한 OI 자료동화의 최적 매개변수 산정 연구 (Experimental Study of Estimating the Optimized Parameters in OI)

  • 구본호;우승범;김상일
    • 한국해안·해양공학회논문집
    • /
    • 제31권6호
    • /
    • pp.458-467
    • /
    • 2019
  • 본 연구는 자료동화에 필요한 매개변수의 최적화된 값를 산정하기 위해 서남해안을 포함하는 한반도 중심해역에 해양순환수치모델 FVCOM(Finite Volume Community Ocean Model)을 구축 및 검증하고 이에 연속관측된 수층별 유속자료와 OI(Optimal Interpolation)를 자료동화하였다. 자료동화에는 서남해안에 위치한 4정점에서 ADCP(Acoustic Doppler Current Profiler)을 통해 관측된 수층별 유속자료를 사용하였다. 자료동화에 사용된 배경 모델은 복잡하고 불규칙한 지형적 특성을 가진 서남해안 중심의 한반도 해역을 비구조격자체계의 해양순환수치모델인 FVCOM으로 구성하고 이를 조석검증하였다. 최적내삽법의 Correlation length와 Scale factor는 자료동화 과정에서 관측값의 영향 범위를 결정하고 오차를 보정할 수 있는 매개변수다. 자료동화기법 내 매개변수는 연구 지역에 존재하는 해양학적 특성에 따라 능동적으로 변동되기 때문에 이를 토대로 경험적인 산정 연구가 필요하다. 따라서 서남해안에서 요구되는 각 매개변수들을 Taylor diagram을 활용하여 관측정점별로 분석하고 최적값을 산정하였다. 산정된 최적매개변수는 관측정점마다 요구되는 값이 상이하며 연안에서 외해로 갈수록 증가하는 추세를 보인다. 추가로 조석검증 전과 후에 따른 배경 모델이 갖는 정확성이 자료동화 효과에 미치는 영향을 분석하였다. 조석검증을 통해 정확성이 높아진 배경 모델은 배경오차공분산이 상대적으로 감소됨에 따라서 총 비중 함수가 0에 가까워지고 결과적으로 최적매개변수값이 감소하였다. 이러한 최적매개변수는 광역 모델이 갖고 있는 연안역까지 도달하는 개방경계의 한계점을 완화시켜줄 것으로 기대하며 향후 관측정점별로 요구되는 최적매개변수값을 독립적으로 적용하도록 개선한다면 향상된 해양예측 시스템 개발에 도움이 될 것으로 기대한다.

Sensitivity of Data Assimilation Configuration in WAVEWATCH III applying Ensemble Optimal Interpolation

  • Hye Min Lim;Kyeong Ok Kim;Hanna Kim;Sang Myeong Oh;Young Ho Kim
    • 한국지구과학회지
    • /
    • 제45권4호
    • /
    • pp.349-362
    • /
    • 2024
  • We aimed to evaluate the effectiveness of ensemble optimal interpolation (EnOI) in improving the analysis of significant wave height (SWH) within wave models using satellite-derived SWH data. Satellite observations revealed higher SWH in mid-latitude regions (30° to 60° in both hemispheres) due to stronger winds, whereas equatorial and coastal areas exhibited lower wave heights, attributed to calmer winds and land interactions. Root mean square error (RMSE) analysis of the control experiment without data assimilation revealed significant discrepancies in high-latitude areas, underscoring the need for enhanced analysis techniques. Data assimilation experiments demonstrated substantial RMSE reductions, particularly in high-latitude regions, underscoring the effectiveness of the technique in enhancing the quality of analysis fields. Sensitivity experiments with varying ensemble sizes showed modest global improvements in analysis fields with larger ensembles. Sensitivity experiments based on different decorrelation length scales demonstrated significant RMSE improvements at larger scales, particularly in the Southern Ocean and Northwest Pacific. However, some areas exhibited slight RMSE increases, suggesting the need for region-specific tuning of assimilation parameters. Reducing the observation error covariance improved analysis quality in certain regions, including the equator, but generally degraded it in others. Rescaling background error covariance (BEC) resulted in overall improvements in analysis fields, though sensitivity to regional variability persisted. These findings underscore the importance of data assimilation, parameter tuning, and BEC rescaling in enhancing the quality and reliability of wave analysis fields, emphasizing the necessity of region-specific adjustments to optimize assimilation performance. These insights are valuable for understanding ocean dynamics, improving navigation, and supporting coastal management practices.

빠른 속도로 기동하는 표적 환경에 적합한 조향각 오차 보정기법 (Steering Angle Error Compensation Algorithm Appropriate for Rapidly Moving Sources)

  • 박규태;박도현;이정훈;이균경
    • 한국음향학회지
    • /
    • 제23권3호
    • /
    • pp.206-213
    • /
    • 2004
  • 본 논문에서는 수중에서 빠른 속도로 기동하는 표적 환경에 적합한 조향각 오차 보정기법을 제안한다. 기존의 협대역 조향각 오차 보정기법에서는 다수의 시간 데이터 단편을 이용한 반면, 제안한 기법은 하나의 시간 데이터 단편에서 다수의 주파수 성분들로부터 모드 공분산행렬을 구성하고, 이를 이용하여 얻어진 광대역 MVDR (Minimum Variance Distortionless Response) 빔출력을 최대화시키는 조향각 오차를 추정함으로써 짧은 관측시간 내에 정확한 표적의 방위각을 추정할 수 있다. 모의신호와 실제 해상 실험 데이터를 이용하여 제안한 기법의 성능을 기존의 기법과 비교, 분석하였다.

Conditional bootstrap confidence intervals for classification error rate when a block of observations is missing

  • Chung, Hie-Choon;Han, Chien-Pai
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권1호
    • /
    • pp.189-200
    • /
    • 2013
  • In this paper, it will be assumed that there are two distinct populations which are multivariate normal with equal covariance matrix. We also assume that the two populations are equally likely and the costs of misclassification are equal. The classification rule depends on the situation whether the training samples include missing values or not. We consider the conditional bootstrap confidence intervals for classification error rate when a block of observation is missing.

Investigation into SINS/ANS Integrated Navigation System Based on Unscented Kalman Filtering

  • Ali, Jamshaid;Jiancheng, Fang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.241-245
    • /
    • 2005
  • Strapdown inertial navigation system (SINS) integrated with astronavigation system (ANS) yields reliable mission capability and enhanced navigational accuracy for spacecrafts. The theory and characteristics of integrated system based on unscented Kalman filtering is investigated in this paper. This Kalman filter structure uses unscented transform to approximate the result of applying a specified nonlinear transformation to a given mean and covariance estimate. The filter implementation subsumed here is in a direct feedback mode. Axes misalignment angles of the SINS are observation to the filter. A simple approach for simulation of axes misalignment using stars observation is presented. The SINS error model required for the filtering algorithm is derived in space-stabilized mechanization. Simulation results of the integrated navigation system using a medium accuracy SINS demonstrates the validity of this method on improving the navigation system accuracy with the estimation and compensation for gyros drift, and the position and velocity errors that occur due to the axes misalignments.

  • PDF

Orbit Determination of KOMPSAT-1 and Cryosat-2 Satellites Using Optical Wide-field Patrol Network (OWL-Net) Data with Batch Least Squares Filter

  • Lee, Eunji;Park, Sang-Young;Shin, Bumjoon;Cho, Sungki;Choi, Eun-Jung;Jo, Junghyun;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권1호
    • /
    • pp.19-30
    • /
    • 2017
  • The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data were determined to be tens of arcsec and sub-degree level, respectively.