• Title/Summary/Keyword: Objective Prediction

Search Result 1,082, Processing Time 0.029 seconds

Evaluation and Analysis of Gwangwon-do Landslide Susceptibility Using Logistic Regression (로지스틱 회귀분석 기법을 이용한 강원도 산사태 취약성 평가 및 분석)

  • Yeon, Young-Kwang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.116-127
    • /
    • 2011
  • This study conducted landslide susceptibility analysis using logistic regression. The performance of prediction model needs to be evaluated considering two aspects such as a goodness of fit and a prediction accuracy. Thus to gain more objective prediction results in this study, the prediction performance of the applied model was evaluated considering two such evaluation aspects. The selected study area is located between Inje-eup and Buk-myeon in the middle of Kwangwon. Landslides in the study area were caused by heavy rain in 2006. Landslide causal factors were extracted from topographic map, forest map and soil map. The evaluation of prediction model was assessed based on the area under the curve of the cumulative gain chart. From the results of experiments, 87.9% in the goodness of fit and 84.8% in the cross validation were evaluated, showing good prediction accuracies and not big difference between the results of the two evaluation methods. The results can be interpreted in terms of the use of environmental factors which are highly related to landslide occurrences and the accuracy of the prediction model.

Development & Evaluation of Real-time Ensemble Drought Prediction System (실시간 앙상블 가뭄전망정보 생산 체계 구축 및 평가)

  • Bae, Deg-Hyo;Ahn, Joong-Bae;Kim, Hyun-Kyung;Kim, Heon-Ae;Son, Kyung-Hwan;Cho, Se-Ra;Jung, Ui-Seok
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.113-121
    • /
    • 2013
  • The objective of this study is to develop and evaluate the system to produce the real-time ensemble drought prediction data. Ensemble drought prediction consists of 3 processes (meteorological outlook using the multi-initial conditions, hydrological analysis and drought index calculation) therefore, more processing time and data is required than that of single member. For ensemble drought prediction, data process time is optimized and hardware of existing system is upgraded. Ensemble drought data is estimated for year 2012 and to evaluate the accuracy of drought prediction data by using ROC (Relative Operating Characteristics) analysis. We obtained 5 ensembles as optimal number and predicted drought condition for every tenth day i.e. 5th, 15th and 25th of each month. The drought indices used are SPI (Standard Precipitation Index), SRI (Standard Runoff Index), SSI (Standard Soil moisture Index). Drought conditions were determined based on results obtained for each ensemble member. Overall the results showed higher accuracy using ensemble members as compared to single. The ROC score of SRI and SSI showed significant improvement in drought period however SPI was higher in the demise period. The proposed ensemble drought prediction system can be contributed to drought forecasting techniques in Korea.

DIVERGENT SELECTION FOR POSTWEANING FEED CONVERSION IN ANGUS BEEF CATTLE V. PREDICTION OF FEED CONVERSION USING WEIGHTS AND LINEAR BODY MEASUREMENTS

  • Park, N.H.;Bishop, M.D.;Davis, M.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.441-448
    • /
    • 1994
  • Postweaning performance data were obtained on 187 group fed purebred Angus calves from 12 selected sires (six high and six low feed conversion sires) in 1985 and 1986. The objective of this portion of the study was to develop prediction equations for feed conversion from a stepwise regression analysis. Variables measured were on-test weight (ONTSTWT), on-test age (ONTSTAG), five weights by 28-d periods, seven linear body measurements: heart girth (HG), hip height (HH), head width (HDW), head length (HDL), muzzle circumference (MC), length between hooks and pins (HOPIN) and length between shoulder and hooks (SHHO), and backfat thickness (BF). Stepwise regressions for maintenance adjusted feed conversion (ADJFC) and unadjusted feed conversion (UNADFC) over the first 140 d of the test, and total feed conversion (FC) until progeny reached 8.89 mm of back fat were obtained separately by conversion groups and sexes and for combined feed conversion groups and sexes. In general, weights were more important than linear body measurements in prediction of feed utilization. To some extent this was expected as weight is related directly to gain which is a component of feed conversion. Weight at 112 d was the most important variable in prediction of feed conversion when data from both feed conversion groups and sexes were combined. Weights at 84 and 140 d were important variables in prediction of UNADFC and FC, respectively, of bulls. ONTSTWT and weight at 140 d had the highest standardized partial regression coefficients for UNADFC and ADJFC, respectively, of heifers. Results indicated that linear measurements, such as MC, HDL and HOPIN, are useful in prediction of feed conversion when feed in takes are unavailable.

Prediction of Fracture Resistance Curves for Nuclear Piping Materials(III) (원자력 배관재료의 파괴저항곡선 예측)

  • Chang, Yoon-Suk;Seok, Chang-Sung;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1796-1808
    • /
    • 1997
  • In order to perform leak-before-break design of nuclear piping systems and integrity evaluation of reactor vessels, full stress-strain curves and fracture resistance(J-R) curves are required. However it is time-consuming and expensive to obtain J-R curves experimentally. To resolve these problems, three different methods for predicting J-R curves from tensile data were proposed by the authors previously. The objective of this paper is to develop a computer program based on those J-R curve prediction methods. The program consists of two major parts ; the main program part for the J-R curve prediction and the database part. Several case studies were performed to verify the program, and it was shown that the predicted results were, in general, in good agreement with the experimental ones.

Prediction of Fracture Resistance Curves for Nuclear Piping Materials(II) (원자력 배관재료의 파괴저항곡선 예측)

  • Chang, Yoon-Suk;Seok, Chang-Sung;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1786-1795
    • /
    • 1997
  • In order to perform leak-before-break design of nuclear piping systems and integrity evaluation of reactor vessels, full stress-strain curves and fracture resistance (J-R) curves are required. However it is time-consuming and expensive to obtain J-R curves experimentally. The objective of this paper is to modify two J-R curve prediction methods previously proposed by the authors and to propose an additional J-R curve prediction method for nuclear piping materials. In the first method which is based on the elastic-plastic finite element analysis, a blunting region handling procedure is added to the existing method. In the second method which is based on the empirical equation, a revised general equation is proposed to apply to both carbon steel and stainless steel. Finally, in the third method, both full stress-strain curve and finite element analysis results are used for J-R curve prediction. A good agreement between the predicted results based on the proposed methods and the experimental ones is obtained.

Prediction Models of Conflict and Intimacy in Teacher-Child Relationships: Investigation of Child Variables Based on Decision Tree Analysis (교사-유아 관계의 갈등 및 친밀감에 대한 예측 모형: 의사결정나무분석을 적용한 유아변인의 탐색)

  • Shin, Yoolim
    • Korean Journal of Childcare and Education
    • /
    • v.16 no.5
    • /
    • pp.69-86
    • /
    • 2020
  • Objective: The purpose of this research was to examine the prediction models of conflict and intimacy in teacher-child relationships based on decision tree analysis. Methods: The participants were 297 preschool children from ages three to five including 166 boys and 131 girls. Teacher-child relationships were measured by the Student-Teacher Relationship Scale(STRS). Physical aggression, relational aggression, social withdrawal, and prosocial behaviors were measured by teacher ratings. Moreover, ADHD-RS(Attentive Deficit Hyperactivity Disorder Rating Scale) was used to measure ADHD. The data was analyzed with decision tree analysis. Results: According to the prediction model for teacher-child conflict, the significant predictors were physical aggression and social withdrawal. According to the prediction model for teacher-child intimacy, the significant predictors were prosocial behaviors and relational aggression. However, children's age, gender and ADHD were not significant predictors. Conclusion/Implications: The findings suggest that social behaviors may be closely related with teacher-child relationships for preschool children. Based on the results of this study, intervention suggestions were made.

Performance Prediction of a Combined Heat and Power Plant Considering the Effect of Various Gas Fuels

  • Joo, Yong-jin;Kim, Mi-yeong;Park, Se-ik;Seo, Dong-kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • The performance prediction software developed in this paper is a process analysis tool that enables one to foretell the behavior of processes when certain conditions of operation are altered. The immediate objective of this research is to predict the process characteristics of combined heat and power plant under varying operating conditions. A cogeneration virtual power plant that mimics the mechanical performance of the actual plant was constructed and the performance of the power plant was predicted in the following varying atmospheric conditions: temperature, pressure and humidity. This resulted in a positive outcome where the performance of the power plant under changing conditions were correctly predicted as well as the calorific value of low calorific gas fuel such as shale gas and PNG. The performance prediction tool can detect the operation characteristics of the power plant through the performance index analysis and thus propose the operation method taking into consideration the changes in environmental conditions.

Evaluation of Plastic Collapse Pressure for Steam Generator Tube with Non-Aligned Two Axial Through-Wall Cracks (두 개의 비대칭 축방향 관통균열이 존재하는 증기발생기 세관의 소성붕괴압력 평가)

  • Moon Seong-In;Chang Yoon-Suk;Lee Jin-Ho;Song Myung-Ho;Choi Young-Hwan;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1070-1077
    • /
    • 2005
  • The $40\%$ of wall thickness criterion which has been used as a plugging rule is applicable only to a single cracked steam generator tubes. In the previous studies performed by authors, several failure prediction models were introduced to estimate the plastic collapse pressures of steam generator tubes containing collinear or parallel two adjacent axial through-wall cracks. The objective of this study is to examine the failure prediction models and propose optimum ones for non-aligned two axial through-wall cracks in steam generator tubes. In order to determine the optimum ones, a series of plastic collapse tests and finite element analyses were carried out for steam generator tubes with two machined non-aligned axial through-wall cracks. Thereby, either the plastic zone contact model or COD based model was selected as the optimum one according to axial distance between two clacks. Finally, the optimum failure prediction model was used to demonstrate the conservatism of flaw characterization rules for various multiple flaws according to ASME code.

Calibration of Fatigue Performance Prediction Model for Flexible Pavements Using Field Data (현장 데이터를 이용한 연성포장용 피로 공용성 예측모델 검정)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.234-241
    • /
    • 2012
  • The main objective of this research is to calibrate the performance prediction models for the growth of fatigue cracking in multi-layered asphalt concrete pavement systems. However, the calibration factors are dependent upon the prediction model, testing method, and the laboratory loading history. A detailed study on the field data has revealed that the performance of flexible pavements is affected by both the traffic loading and the environmental cycling which is related to the age of the pavements. Thus, a composite indicator was developed in this study which utilizes both the traffic and the age information with appropriate weighting factors. Using the proposed fatigue performance model the calibration factors were also estimated through the comparisons between the field performances on fatigue cracking and the laboratory-based fatigue life.

Energy Ratio Factor and Phase Angle Based Fatigue Prediction Model for Flexible Pavements

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 2011
  • The main objective of this research is to develop fatigue prediction model for flexible pavements using energy ratio factor and phase angle. The two parameters are considered as fundamental properties of time and temperature dependent viscoelastic asphalt concrete materials. The energy ratio factor is defined as the ratio of the pseudo-total cumulative dissipated energy to the cumulative dissipated energy to failure during the test. The phase angle between the stress and strain ware signals stems from the intrinsic the dependent asphalt mixture behavior. The phase angle was computed and the relationship between the initial mixture stiffness and the initial phase angle is presented. As a result, fatigue prediction model for flexible pavements was proposed using intrinsic properties of viscoelastic asphalt concrete materials.