• Title/Summary/Keyword: Objective Prediction

Search Result 1,082, Processing Time 0.025 seconds

Prediction of Surface Residual Stress of Multi-pass Drawn Steel Wire Using Numerical Analysis (수치해석을 이용한 탄소강 다단 신선 와이어 표면 잔류응력 예측)

  • Lee, S.B.;Lee, I.K.;Jeong, M.S.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.162-167
    • /
    • 2017
  • The tensile surface residual stress in the multi-pass drawn wire deteriorates the mechanical properties of the wire. Therefore, the evaluation of the residual stress is very important. Especially, the axial residual stress on the wire surface is the highest. Therefore, the objective of this study was to propose an axial surface residual stress prediction model of the multi-pass drawn steel wire. In order to achieve this objective, an elastoplastic finite element (FE) analysis was carried out to investigate the effect of semi-die angle and reduction ratio of the axial surface residual stress. By using the results of the FE analysis, a surface residual stress prediction model was proposed. In order to verify the effectiveness of the prediction model, the predicted residual stress was compared to that of a wire drawing experiment.

A study on multi-objective optimal design of derrick structure: Case study

  • Lee, Jae-chul;Jeong, Ji-ho;Wilson, Philip;Lee, Soon-sup;Lee, Tak-kee;Lee, Jong-Hyun;Shin, Sung-chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.661-669
    • /
    • 2018
  • Engineering system problems consist of multi-objective optimisation and the performance analysis is generally time consuming. To optimise the system concerning its performance, many researchers perform the optimisation using an approximation model. The Response Surface Method (RSM) is usually used to predict the system performance in many research fields, but it shows prediction errors for highly nonlinear problems. To create an appropriate metamodel for marine systems, Lee (2015) compares the prediction accuracy of the approximation model, and multi-objective optimal design framework is proposed based on a confirmed approximation model. The proposed framework is composed of three parts: definition of geometry, generation of approximation model, and optimisation. The major objective of this paper is to confirm the applicability/usability of the proposed optimal design framework and evaluate the prediction accuracy based on sensitivity analysis. We have evaluated the proposed framework applicability in derrick structure optimisation considering its structural performance.

Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method (다중최적화기법을 이용한 강우-유사-유출 예측 불확실성 평가)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jung, Kwan-Sue;Cho, Bok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1011-1027
    • /
    • 2010
  • In hydrologic modeling, prediction uncertainty generally stems from various uncertainty sources associated with model structure, data, and parameters, etc. This study aims to assess the parameter uncertainty effect on hydrologic prediction results. For this objective, a distributed rainfall-sediment yield-runoff model, which consists of rainfall-runoff module for simulation of surface and subsurface flows and sediment yield module based on unit stream power theory, was applied to the mesoscale mountainous area (Cheoncheon catchment; 289.9 $km^2$). For parameter uncertainty evaluation, the model was calibrated by a multi-objective optimization algorithm (MOSCEM) with two different objective functions (RMSE and HMLE) and Pareto optimal solutions of each case were then estimated. In Case I, the rainfall-runoff module was calibrated to investigate the effect of parameter uncertainty on hydrograph reproduction whereas in Case II, sediment yield module was calibrated to show the propagation of parameter uncertainty into sedigraph estimation. Additionally, in Case III, all parameters of both modules were simultaneously calibrated in order to take account of prediction uncertainty in rainfall-sediment yield-runoff modeling. The results showed that hydrograph prediction uncertainty of Case I was observed over the low-flow periods while the sedigraph of high-flow periods was sensitive to uncertainty of the sediment yield module parameters in Case II. In Case III, prediction uncertainty ranges of both hydrograph and sedigraph were larger than the other cases. Furthermore, prediction uncertainty in terms of spatial distribution of erosion and deposition drastically varied with the applied model parameters for all cases.

Development of Rutting Prediction Model of Flexible Pavement using Repetitive Axial Loading Test (반복 축하중 시험을 이용한 연성포장의 소성변형 예측모델 개발)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2017
  • The primary objective of this research is to develop a rutting performance prediction model of flexible pavement. Extensive laboratory testings were conducted to achieve the objective. A new test method employing repetitive axial loading with confinement was also adopted to estimate the rutting performance of asphalt concrete in the research. The rutting prediction model employes a layer-strain theory. The required rutting coefficients for the prediction model were determined through the laboratory rutting characterizations of the asphalt concrete layer materials. Within the limits of this study, a laboratory rutting prediction model of flexible pavement using repetitive axial loading test was presented. It is noted that the developed rutting prediction model simulates propery the behaviors of flexible pavement layer materials.

Cross-Cultural Comparison of Sound Sensation and Its Prediction Models for Korean Traditional Silk Fabrics

  • Yi, Eun-Jou
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.269-276
    • /
    • 2005
  • In this study, cross-cultural comparison of sound sensation for Korean traditional silk fabrics between Korea and America was performed and prediction models for sound sensation by objective measurements including sound parameters such as level pressure of total sound (LPT), Zwicker's psychoacoustic characteristics, and mechanical properties by Kawabata Evaluation System were established for each nation to explore the objective parameters explaining sound sensation of the Korean traditional silk. As results, Koreans felt the silk fabric sounds soft and smooth while Americans were revealed as perceiving them hard and rough. Both Koreans and Americans were pleasant with sounds of Gongdan and Newttong and especially Newttong was preferred more by Americans in terms of sound sensation. In prediction models, some of subjective sensation were found as being related mainly with mechanical properties of traditional silk fabrics such as surface and compressional characteristics.

Response Surface Approximation for Fatigue Life Prediction and Its Application to Compromise Decision Support Problem (피로수명예측을 위한 반응표면근사화와 절충의사결정문제의 응용)

  • Baek, Seok-Heum;Cho, Seok-Swoo;Jang, Deuk-Yul;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1187-1192
    • /
    • 2008
  • In this paper, a versatile multi-objective optimization concept for fatigue life prediction is introduced. Multi-objective decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability.

  • PDF

Development of Load Prediction Equations of Office Buildings

  • Seok, Ho-Tae;Kim, Kwang-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.2
    • /
    • pp.65-71
    • /
    • 2002
  • The objective of this study is to evaluate the design parameters and to develop the cooling and heating load prediction equations of office buildings. The building load calculation simulation was carried out using the DOE-2.1E program. The results of the simulation were used as data for multiple regression analysis which could develop the load prediction equations.

Thermal Performance Evaluation of Design Parameters and Development of Load Prediction Equations of Office Buildings (사무소 건설의 설계변수 열성능 평가 및 부하예측방정식 개발)

  • 석호태;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.914-921
    • /
    • 2001
  • The objective of this study is to evaluate the design parameters and to develop the cooling and heating load prediction equations of office buildings. The building load calculation simulation was carried out using the DOE-2.1E program. The results of the simulation was used as a data for ANOVA and multiple regression analysis which could develop the load prediction equations.

  • PDF

Development of the Expert Seasonal Prediction System: an Application for the Seasonal Outlook in Korea

  • Kim, WonMoo;Yeo, Sae-Rim;Kim, Yoojin
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.563-573
    • /
    • 2018
  • An Expert Seasonal Prediction System for operational Seasonal Outlook (ESPreSSO) is developed based on the APEC Climate Center (APCC) Multi-Model Ensemble (MME) dynamical prediction and expert-guided statistical downscaling techniques. Dynamical models have improved to provide meaningful seasonal prediction, and their prediction skills are further improved by various ensemble and downscaling techniques. However, experienced scientists and forecasters make subjective correction for the operational seasonal outlook due to limited prediction skills and biases of dynamical models. Here, a hybrid seasonal prediction system that grafts experts' knowledge and understanding onto dynamical MME prediction is developed to guide operational seasonal outlook in Korea. The basis dynamical prediction is based on the APCC MME, which are statistically mapped onto the station-based observations by experienced experts. Their subjective selection undergoes objective screening and quality control to generate final seasonal outlook products after physical ensemble averaging. The prediction system is constructed based on 23-year training period of 1983-2005, and its performance and stability are assessed for the independent 11-year prediction period of 2006-2016. The results show that the ESPreSSO has reliable and stable prediction skill suitable for operational use.

Bankruptcy Prediction using Support Vector Machines (Support Vector Machine을 이용한 기업부도예측)

  • Park, Jung-Min;Kim, Kyoung-Jae;Han, In-Goo
    • Asia pacific journal of information systems
    • /
    • v.15 no.2
    • /
    • pp.51-63
    • /
    • 2005
  • There has been substantial research into the bankruptcy prediction. Many researchers used the statistical method in the problem until the early 1980s. Since the late 1980s, Artificial Intelligence(AI) has been employed in bankruptcy prediction. And many studies have shown that artificial neural network(ANN) achieved better performance than traditional statistical methods. However, despite ANN's superior performance, it has some problems such as overfitting and poor explanatory power. To overcome these limitations, this paper suggests a relatively new machine learning technique, support vector machine(SVM), to bankruptcy prediction. SVM is simple enough to be analyzed mathematically, and leads to high performances in practical applications. The objective of this paper is to examine the feasibility of SVM in bankruptcy prediction by comparing it with ANN, logistic regression, and multivariate discriminant analysis. The experimental results show that SVM provides a promising alternative to bankruptcy prediction.