• Title/Summary/Keyword: Object-Oriented Approach

Search Result 245, Processing Time 0.028 seconds

Efficient Description Method for Hanok Components Reflecting Coupling Scheme of Wooden Structure (목조건축의 결구방식을 고려한 효과적인 한옥부재 표현 기법)

  • Ahn, Eun-Young;Kim, Jae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.318-328
    • /
    • 2011
  • This paper suggests a comprehensive method to describe architectural components for supporting Korean Traditional Building design with only small components set in CAD system. Korean traditional buildings can be classified variously based on the their size, usage and structure type(whether ornament part, namely Gongpo, is in there or not). Moreover components can be varied according to the combining rule between them. If all of these components are presented, these tremendous components rather prevent the efficient design of traditional buildings. In order to solve this problem we present object-oriented approach to describe versatile components as one template if they are same in functional aspects. From the template, many similar instances can be derived according to the attribute value. The templates are designed in order to reflect the coupling scheme between components in the relative parameters of the templates. It leads effects of minimizing error which can be occurred frequently in the process of traditional building design.

Dynamic Impact Analysis Method using Use-case and UML Models on Object-oriented Analysis (객체지향 분석의 유스케이스와 UML 모델을 이용한 동적 영향 분석 방법)

  • Lee, Chan;Youn, Cheong
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1104-1114
    • /
    • 2016
  • Software is continuously changing during development and after development. When a change is required, it is difficult to precisely grasp the scope of impact intuitively. A systematic method is needed to accomplish the required change. The purpose of impact analysis on software change is to avoid missing any information by recognizing the ripple effect that the change might cause. This paper proposes a dynamic method that can easily identify the scope of change request by using the association between use-case scenarios and artifacts of UML modeling in object-oriented development environment. By using this approach, the scope of impact that the change might have on other components such as class diagram and sequence diagram in use-case scenarios can be identified by forward tracing. In addition, analysis of influence of possible further changes due to changes in other components can be identified iteratively through backward tracing. The results of this paper are not limited to impact analysis on artifacts and change type. They can also be used as basic guidelines during impact analysis for various change requests.

Analytical System Development for Reinforced Tall Buildings with Construction Sequence (시공단계에 따른 철근콘크리트 고층건물의 해석시스템 개발)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.410-417
    • /
    • 2013
  • Long-term behavior analysis considering construction sequence should be performed in the design and the actual construction of reinforced tall buildings. Most of the analytical studies on this subject, however, has not been applied directly to the structural design and the construction caused by the simple approach. As the axial force redistribution of shores and columns is time-dependent, the actual construction sequence with the placement of concrete, form removal, reshoring, shore removal, and the additional load application is very important. Object-oriented analysis program considering construction sequence, especially time-dependent deformation in early days, is developed. This system is composed of input module, database module, database store module, analysis module, and result generation module. Linkage interface between the central database and each of the related module is implemented by the visual c# concept. Graphic user interface and the relational database table are supported for user's convenience.

Cluster-Based Spin Images for Characterizing Diffuse Objects in 3D Range Data

  • Lee, Heezin;Oh, Sangyoon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.377-382
    • /
    • 2014
  • Detecting and segmenting diffuse targets in laser ranging data is a critical problem for tactical reconnaissance. In this study, we propose a new method that facilitates the characterization of diffuse irregularly shaped objects using "spin images," i.e., local 2D histograms of laser returns oriented in 3D space, and a clustering process. The proposed "cluster-based spin imaging" method resolves the problem of using standard spin images for diffuse targets and it eliminates much of the computational complexity that characterizes the production of conventional spin images. The direct processing of pre-segmented laser points, including internal points that penetrate through a diffuse object's topmost surfaces, avoids some of the requirements of the approach used at present for spin image generation, while it also greatly reduces the high computational time overheads incurred by searches to find correlated images. We employed 3D airborne range data over forested terrain to demonstrate the effectiveness of this method in discriminating the different geometric structures of individual tree clusters. Our experiments showed that cluster-based spin images have the potential to separate classes in terms of different ages and portions of tree crowns.

Applying Meta-model Formalization of Part-Whole Relationship to UML: Experiment on Classification of Aggregation and Composition (UML의 부분-전체 관계에 대한 메타모델 형식화 이론의 적용: 집합연관 및 복합연관 판별 실험)

  • Kim, Taekyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.99-118
    • /
    • 2015
  • Object-oriented programming languages have been widely selected for developing modern information systems. The use of concepts relating to object-oriented (OO, in short) programming has reduced efforts of reusing pre-existing codes, and the OO concepts have been proved to be a useful in interpreting system requirements. In line with this, we have witnessed that a modern conceptual modeling approach supports features of object-oriented programming. Unified Modeling Language or UML becomes one of de-facto standards for information system designers since the language provides a set of visual diagrams, comprehensive frameworks and flexible expressions. In a modeling process, UML users need to consider relationships between classes. Based on an explicit and clear representation of classes, the conceptual model from UML garners necessarily attributes and methods for guiding software engineers. Especially, identifying an association between a class of part and a class of whole is included in the standard grammar of UML. The representation of part-whole relationship is natural in a real world domain since many physical objects are perceived as part-whole relationship. In addition, even abstract concepts such as roles are easily identified by part-whole perception. It seems that a representation of part-whole in UML is reasonable and useful. However, it should be admitted that the use of UML is limited due to the lack of practical guidelines on how to identify a part-whole relationship and how to classify it into an aggregate- or a composite-association. Research efforts on developing the procedure knowledge is meaningful and timely in that misleading perception to part-whole relationship is hard to be filtered out in an initial conceptual modeling thus resulting in deterioration of system usability. The current method on identifying and classifying part-whole relationships is mainly counting on linguistic expression. This simple approach is rooted in the idea that a phrase of representing has-a constructs a par-whole perception between objects. If the relationship is strong, the association is classified as a composite association of part-whole relationship. In other cases, the relationship is an aggregate association. Admittedly, linguistic expressions contain clues for part-whole relationships; therefore, the approach is reasonable and cost-effective in general. Nevertheless, it does not cover concerns on accuracy and theoretical legitimacy. Research efforts on developing guidelines for part-whole identification and classification has not been accumulated sufficient achievements to solve this issue. The purpose of this study is to provide step-by-step guidelines for identifying and classifying part-whole relationships in the context of UML use. Based on the theoretical work on Meta-model Formalization, self-check forms that help conceptual modelers work on part-whole classes are developed. To evaluate the performance of suggested idea, an experiment approach was adopted. The findings show that UML users obtain better results with the guidelines based on Meta-model Formalization compared to a natural language classification scheme conventionally recommended by UML theorists. This study contributed to the stream of research effort about part-whole relationships by extending applicability of Meta-model Formalization. Compared to traditional approaches that target to establish criterion for evaluating a result of conceptual modeling, this study expands the scope to a process of modeling. Traditional theories on evaluation of part-whole relationship in the context of conceptual modeling aim to rule out incomplete or wrong representations. It is posed that qualification is still important; but, the lack of consideration on providing a practical alternative may reduce appropriateness of posterior inspection for modelers who want to reduce errors or misperceptions about part-whole identification and classification. The findings of this study can be further developed by introducing more comprehensive variables and real-world settings. In addition, it is highly recommended to replicate and extend the suggested idea of utilizing Meta-model formalization by creating different alternative forms of guidelines including plugins for integrated development environments.

A Study on Automation of Connection Design in Integrated System for Steel Structures (철골 구조설계 통할 시스템에서 접합부 설계 자동화에 관한 연구)

  • 김재동;천진호;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.397-404
    • /
    • 2000
  • The research of the computer-aided analysis and design of steel structures has continuously evolved. Despite the importance of connection in steel structures, the design process of connections is inefficient in present. The purpose of this study is to help engineer in connection design process. In this paper, prototype of automatic connection design module in integrated system for steel structures is proposed. The main methodology is based on bottom-up approach to simplify and formalize product model. Expert system is used to help engineer for selecting steel connection type. Object-oriented analysis and modeling will improve the expansion of knowledge-base. The design for connection was done according to the design specifications of connections of AISC

  • PDF

A CAI system for conceptual design of aircraft

  • Murotsu, Yoshisada;Tsujio, Showzow;Park, Choong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1633-1638
    • /
    • 1991
  • A CAI system is developed to support the Instruction of an aircraft conceptual design for aeronautical engineering students. Three system concepts are proposed and an Object-Oriented approach is applied to construct the system. The system has three major functions to perform a conceptual design: (1) the system stores modular data and empirical formulas used for a wide range of aircraft design tasks from light aircraft to long range airliners. (2) Implementation of modules by message passing makes it easy to realize the various design tasks required for different design requirements. (3) The system allows users to study trade-off among the requirements. The system has a graphical user Interface which allows users to communicate with the system interactively. The effectiveness of the system Is demonstrated through some case studies.

  • PDF

Hybrid Shop Floor Control System for Computer Integrated Manufacturing (CIM)

  • Park, Kyung-Hyun;Lee, Seok-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.544-554
    • /
    • 2001
  • A shop floor can be considered as an important level to develop Computer Integrated Manufacturing system (CIMs). However, a shop floor is a dynamic environment where unexpected events continuously occur, and impose changes to the planned activities. To deal with this problem, a shop floor should adopt an appropriate control system that is responsible for the coordination and control of the manufacturing physical flow and information flow. In this paper, a hybrid control system is described with a shop floor activity methodology called Multi-Layered Task Initiation Diagram (MTD). The architecture of the control model contains three levels: i.e., he shop floor controller (SFC), the intelligent agent controller (IAC) and the equipment controller (EC). The methodology behind the development of the control system is an intelligent multi-agent paradigm that enables the shop floor control system to be an independent, an autonomous, and distributed system, and to achieve an adaptability to change of the manufacturing environment.

  • PDF

Development of a Web-based Powertrain Performance Simulation System (웹기반 자동차 동력전달계 성능 시뮬레이션 시스템 개발)

  • 한형석;이계경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.100-107
    • /
    • 2004
  • The development of a Web-based powertrain performance simulation system is introduced. The development approach of system architecture and each module is introduced along with the H/W and S/W used. The interface with all users is developed via a JAVA Applet. The powertrain modeling and other job history data of a user is managed systematically on the server by database to increase the reusability of the data. A self-developed program using object-oriented programming is used as a solver for the performance simulation. The graph tool for the analysis of simulation results has the collaboration support developed based on JAVA so that synchronous users can view the same result. As a result, the powertrain simulation is possible only with Web-browser for the user and the collaboration support among the relevant engineers is possible.

Understanding Objects : An Action Semantics Approach (액션 의미표기법을 통한 객체의 이해)

  • Doh, Kyung-Goo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3976-3985
    • /
    • 2000
  • This article uses action semantics to formally specify the meaning of objects and their related operations. The action-semantics framework. compared to others. is able to not only express object-oriented computation steps more clearly, but also provide a hint on how to implement them. As a showcase. an action semantics of a variant of Abadi-Cardelli's-calculus is defined. Then we use an example program to show how to derive the meaning.

  • PDF