• 제목/요약/키워드: Object detection optimization method

검색결과 27건 처리시간 0.207초

딥러닝 기반 사물 검출을 활용한 우선순위 사물 중심의 영상 스티칭 (Image Stitching focused on Priority Object using Deep Learning based Object Detection)

  • 이성배;강전호;김규헌
    • 방송공학회논문지
    • /
    • 제25권6호
    • /
    • pp.882-897
    • /
    • 2020
  • 최근 Panorama와 360° 영상이 대표되는 몰입형 미디어 콘텐츠의 활용이 증가하고 있다. 일반적인 카메라 한 대를 통해서 해당 콘텐츠를 생성하기에는 시야각이 제한되기 때문에, 다수의 카메라로 촬영한 영상을 넓은 시야각을 갖는 하나의 영상으로 합성하는 영상 스티칭이 주로 사용되고 있다. 그러나 촬영하는 카메라 간의 시차(Parallax)가 크다면 스티칭 영상에서 시차 왜곡이 발생할 수 있고, 이는 사용자의 콘텐츠 몰입을 제한하기 때문에 시차 왜곡을 극복할 수 있는 영상 스티칭 기술이 필요하다. 시차 왜곡을 극복하기 위한 기존의 Seam Optimization 기반 영상 스티칭 방법은 사물의 위치 정보를 반영하기 위하여 에너지 함수나 객체 세그먼트 정보를 활용하고 있지만, 초기 Seam 생성 위치, 배경 정보, 사물 검출기의 성능 그리고 사물의 배치 등의 제한 사항으로 인해 기술의 적용이 제한될 수 있다. 이에 본 논문에서는 딥러닝 기반 사물 검출을 활용하여 사물의 종류에 따라 다르게 설정한 가중치 값을 시각적 인지 에너지 값에 더함으로써, 기존 기술의 제한 사항을 극복할 수 있는 영상 스티칭 방법을 제안하고자 한다.

영상데이터의 개인정보 영역에 대한 인공지능 기반 비식별화 기법 연구 (Research on Artificial Intelligence Based De-identification Technique of Personal Information Area at Video Data)

  • 송인준;김차종
    • 대한임베디드공학회논문지
    • /
    • 제19권1호
    • /
    • pp.19-25
    • /
    • 2024
  • This paper proposes an artificial intelligence-based personal information area object detection optimization method in an embedded system to de-identify personal information in video data. As an object detection optimization method, first, in order to increase the detection rate for personal information areas when detecting objects, a gyro sensor is used to collect the shooting angle of the image data when acquiring the image, and the image data is converted into a horizontal image through the collected shooting angle. Based on this, each learning model was created according to changes in the size of the image resolution of the learning data and changes in the learning method of the learning engine, and the effectiveness of the optimal learning model was selected and evaluated through an experimental method. As a de-identification method, a shuffling-based masking method was used, and double-key-based encryption of the masking information was used to prevent restoration by others. In order to reuse the original image, the original image could be restored through a security key. Through this, we were able to secure security for high personal information areas and improve usability through original image restoration. The research results of this paper are expected to contribute to industrial use of data without personal information leakage and to reducing the cost of personal information protection in industrial fields using video through de-identification of personal information areas included in video data.

Active Contour Model Based Object Contour Detection Using Genetic Algorithm with Wavelet Based Image Preprocessing

  • Mun, Kyeong-Jun;Kang, Hyeon-Tae;Lee, Hwa-Seok;Yoon, Yoo-Sool;Lee, Chang-Moon;Park, June-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권1호
    • /
    • pp.100-106
    • /
    • 2004
  • In this paper, we present a novel, rapid approach for the detection of brain tumors and deformity boundaries in medical images using a genetic algorithm with wavelet based preprocessing. The contour detection problem is formulated as an optimization process that seeks the contour of the object in a manner of minimizing an energy function based on an active contour model. The brain tumor segmentation contour, however, cannot be detected in case that a higher gradient intensity exists other than the interested brain tumor and deformities. Our method for discerning brain tumors and deformities from unwanted adjacent tissues is proposed. The proposed method can be used in medical image analysis because the exact contour of the brain tumor and deformities is followed by precise diagnosis of the deformities.

복잡한 배경에서 움직이는 물체의 영역분할에 관한 연구 (A Segmentation Method for a Moving Object on A Static Complex Background Scene.)

  • 박상민;권희웅;김동성;정규식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.321-329
    • /
    • 1999
  • Moving Object segmentation extracts an interested moving object on a consecutive image frames, and has been used for factory automation, autonomous navigation, video surveillance, and VOP(Video Object Plane) detection in a MPEG-4 method. This paper proposes new segmentation method using difference images are calculated with three consecutive input image frames, and used to calculate both coarse object area(AI) and it's movement area(OI). An AI is extracted by removing background using background area projection(BAP). Missing parts in the AI is recovered with help of the OI. Boundary information of the OI confines missing parts of the object and gives inital curves for active contour optimization. The optimized contours in addition to the AI make the boundaries of the moving object. Experimental results of a fast moving object on a complex background scene are included.

  • PDF

Online Video Synopsis via Multiple Object Detection

  • Lee, JaeWon;Kim, DoHyeon;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권8호
    • /
    • pp.19-28
    • /
    • 2019
  • In this paper, an online video summarization algorithm based on multiple object detection is proposed. As crime has been on the rise due to the recent rapid urbanization, the people's appetite for safety has been growing and the installation of surveillance cameras such as a closed-circuit television(CCTV) has been increasing in many cities. However, it takes a lot of time and labor to retrieve and analyze a huge amount of video data from numerous CCTVs. As a result, there is an increasing demand for intelligent video recognition systems that can automatically detect and summarize various events occurring on CCTVs. Video summarization is a method of generating synopsis video of a long time original video so that users can watch it in a short time. The proposed video summarization method can be divided into two stages. The object extraction step detects a specific object in the video and extracts a specific object desired by the user. The video summary step creates a final synopsis video based on the objects extracted in the previous object extraction step. While the existed methods do not consider the interaction between objects from the original video when generating the synopsis video, in the proposed method, new object clustering algorithm can effectively maintain interaction between objects in original video in synopsis video. This paper also proposed an online optimization method that can efficiently summarize the large number of objects appearing in long-time videos. Finally, Experimental results show that the performance of the proposed method is superior to that of the existing video synopsis algorithm.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가 (Performance Evaluation of YOLOv5 Model according to Various Hyper-parameters in Nuclear Medicine Phantom Images)

  • 이민관;박찬록
    • 한국방사선학회논문지
    • /
    • 제18권1호
    • /
    • pp.21-26
    • /
    • 2024
  • You only look once v5 (YOLOv5)는 객체 검출 과정에 우수한 성능을 보이고 있는 딥러닝 모델 중 하나다. 그러므로 본 연구의 목적은 양전차방출단층촬영 팬텀 영상에서 다양한 하이퍼 파라미터에 따른 YOLOv5 모델의 성능을 평가했다. 데이터 세트는 500장의 QIN PET segmentation challenge로부터 제공되는 오픈 소스를 사용하였으며, LabelImg 소프트웨어를 사용하여 경계박스를 설정했다. 학습의 적용된 하이퍼파라미터는 최적화 함수 SDG, Adam, AdamW, 활성화 함수 SiLu, LeakyRelu, Mish, Hardwish와 YOLOv5 모델 크기에 따라 nano, small, large, xlarge다. 학습성능을 평가하기 위한 정량적 분석방법으로 Intersection of union (IOU)를 사용하였다. 결과적으로, AdmaW의 최적화 함수, Hardwish의 활성화 함수, nano 크기에서 우수한 객체 검출성능을 보였다. 결론적으로 핵의학 영상에서의 객체 검출 성능에 대한 YOLOV5 모델의 유용성을 확인하였다.

계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템 (Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID)

  • 이상현;양성훈;오승진;강진범
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.89-106
    • /
    • 2022
  • 최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.

3차원 측정 데이터와 영상 데이터를 이용한 특징 형상 검출 (Feature Detection using Measured 3D Data and Image Data)

  • 김한솔;정건화;장민호;김준호
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.601-606
    • /
    • 2013
  • 3D scanning is a technique to measure the 3D shape information of the object. Shape information obtained by 3D scanning is expressed either as point cloud or as polygon mesh type data that can be widely used in various areas such as reverse engineering and quality inspection. 3D scanning should be performed as accurate as possible since the scanned data is highly required to detect the features on an object in order to scan the shape of the object more precisely. In this study, we propose the method on finding the location of feature more accurately, based on the extended Biplane SNAKE with global optimization. In each iteration, we project the feature lines obtained by the extended Biplane SNAKE into each image plane and move the feature lines to the features on each image. We have applied this approach to real models to verify the proposed optimization algorithm.

Optical System Design for Thermal Target Recognition by Spiral Scanning [TRSS]

  • Kim, Jai-Soon;Yoon, Jin-Kyung;Lee, Ho-Chan;Lee, Jai-Hyung;Kim, Hye-Kyung;Lee, Seung-Churl;Ahn, Keun-Ok
    • Journal of the Optical Society of Korea
    • /
    • 제8권4호
    • /
    • pp.174-181
    • /
    • 2004
  • Various kinds of systems, that can do target recognition and position detection simultaneously by using infrared sensing detectors, have been developed. In this paper, the detection system TRSS (Thermal target Recognition by Spiral Scanning) adopts linear array shaped uncooled IR detector and uses spiral type fast scanning method for relative position detection of target objects, which radiate an IR region wavelength spectrum. It can detect thermal energy radiating from a 9 m-size target object as far as 200 m distance. And the maximum field of a detector is fully filled with the same size of target object at the minimum approaching distance 50 m. We investigate two types of lens systems. One is a singlet lens and the other is a doublet lens system. Every system includes one aspheric surface and free positioned aperture stop. Many designs of F/1.5 system with ${\pm}5.2^{\circ}$ field at the Efl=20, 30 mm conditions for single element and double elements lens system respectively are compared in their resolution performance [MTF] according to the aspheric surface and stop position changing on their optimization process. Optimum design is established including mechanical boundary conditions and manufacturing considerations.