• 제목/요약/키워드: Object Recognition Algorithm

검색결과 517건 처리시간 0.061초

Reconstruction algorithm for archaeological fragments using slope features

  • Rasheed, Nada A.;Nordin, Md Jan
    • ETRI Journal
    • /
    • 제42권3호
    • /
    • pp.420-432
    • /
    • 2020
  • The reconstruction of archaeological fragments in 3D geometry is an important problem in pattern recognition and computer vision. Therefore, we implement an algorithm with the help of a 3D model to perform reconstruction from the real datasets using the slope features. This approach avoids the problem of gaps created through the loss of parts of the artifacts. Therefore, the aim of this study is to assemble the object without previous knowledge about the form of the original object. We utilize the edges of the fragments as an important feature in reconstructing the objects and apply multiple procedures to extract the 3D edge points. In order to assign the positions of the unknown parts that are supposed to match, the contour must be divided into four parts. Furthermore, to classify the fragments under reconstruction, we apply a backpropagation neural network. We test the algorithm on several models of ceramic fragments. It achieves highly accurate results in reconstructing the objects into their original forms, in spite of absent pieces.

Impovement of Image Reconstruction from Kinoform using Error-Diffusion Method

  • Fujita, Yuta;Tanaka, Ken-Ichi
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.638-643
    • /
    • 2009
  • A computer-generated hologram(CGH) is made for three-dimensional image reconstruction of a virtual object which is a difficult to irradiate the laser light directly. One of the adverse effect factors is quantization of wave front computed by program when a computer-generated hologram is made. Amplitude element is not considered in Kinoform, it needs processing to reduce noise or false image. So several investigation was reported that the improvement of reconstructed image of Kinoform. Means to calculate the most suitable complex amplitude distribution are iterative algorithm, simulated annealing algorithm and genetic Algorithm. Error diffusion method reconstructed to separate the object as for the noise that originated in the quantization error. So it is efficient method to obtain high quality image with not many processing.

  • PDF

실루엣 기반의 관계그래프 이용한 강인한 3차원 물체 인식 (Robust Recognition of 3D Object Using Attributed Relation Graph of Silhouette's)

  • 김대웅;백경환;한헌수
    • 한국정밀공학회지
    • /
    • 제25권7호
    • /
    • pp.103-110
    • /
    • 2008
  • This paper presents a new approach of recognizing a 3D object using a single camera, based on the extended convex hull of its silhouette. It aims at minimizing the DB size and simplifying the processes for matching and feature extraction. For this purpose, two concepts are introduced: extended convex hull and measurable region. Extended convex hull consists of convex curved edges as well as convex polygons. Measurable region is the cluster of the viewing vectors of a camera represented as the points on the orientation sphere from which a specific set of surfaces can be measured. A measurable region is represented by the extended convex hull of the silhouette which can be obtained by viewing the object from the center of the measurable region. Each silhouette is represented by a relation graph where a node describes an edge using its type, length, reality, and components. Experimental results are included to show that the proposed algorithm works efficiently even when the objects are overlapped and partially occluded. The time complexity for searching the object model in the database is O(N) where N is the number of silhouette models.

가정환경을 위한 실용적인 SLAM 기법 개발 : 비전 센서와 초음파 센서의 통합 (A Practical Solution toward SLAM in Indoor environment Based on Visual Objects and Robust Sonar Features)

  • 안성환;최진우;최민용;정완균
    • 로봇학회논문지
    • /
    • 제1권1호
    • /
    • pp.25-35
    • /
    • 2006
  • Improving practicality of SLAM requires various sensors to be fused effectively in order to cope with uncertainty induced from both environment and sensors. In this case, combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes, extracting robust point and line features from sonar data and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. And fusing sonar features and visual objects through EKF-SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in indoor environment. The performance of the proposed algorithm was verified by experiments in home -like environment.

  • PDF

다각형 세그먼트를 이용한 겹쳐진 물체의 인식 및 위치 추정 (Recognition and positioning of occuluded objects using polygon segments)

  • 정종면;문영식
    • 전자공학회논문지B
    • /
    • 제33B권5호
    • /
    • pp.73-82
    • /
    • 1996
  • In this paper, an efficient algorithm for recognizing and positioning occuluded objects in a two-dimensional plane is presented. Model objects and unknown input image are approximated by polygonal boundaries, which are compactly represented by shape functions of the polygons. The input image is partitioned into measningful segments whose end points are at the locations of possible occlusion - i.e. at concave vertices. Each segment is matched against known model objects by calculating a matching measure, which is defined as the minimum euclidean distance between the shape functions. An O(mm(n+m) algorithm for computing the measure is presentd, where n and m are the number of veritces for a model and an unknown object, respectively. Match results from aprtial segments are combined based on mutual compatibility, then are verified using distance transformation and translation vector to produce the final recognition. The proposed algorithm is invariant under translation and rotation of objects, which has been shown by experimental results.

  • PDF

Online Face Avatar Motion Control based on Face Tracking

  • Wei, Li;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제12권6호
    • /
    • pp.804-814
    • /
    • 2009
  • In this paper, a novel system for avatar motion controlling by tracking face is presented. The system is composed of three main parts: firstly, LCS (Local Cluster Searching) method based face feature detection algorithm, secondly, HMM based feature points recognition algorithm, and finally, avatar controlling and animation generation algorithm. In LCS method, face region can be divided into many small piece regions in horizontal and vertical direction. Then the method will judge each cross point that if it is an object point, edge point or the background point. The HMM method will distinguish the mouth, eyes, nose etc. from these feature points. Based on the detected facial feature points, the 3D avatar is controlled by two ways: avatar orientation and animation, the avatar orientation controlling information can be acquired by analyzing facial geometric information; avatar animation can be generated from the face feature points smoothly. And finally for evaluating performance of the developed system, we implement the system on Window XP OS, the results show that the system can have an excellent performance.

  • PDF

퍼지 논리기반 HAUSDORFF 거리를 이용한 물체 인식 (Comparing object images using fuzzy-logic induced Hausdorff Distance)

  • 강환일
    • 지능정보연구
    • /
    • 제6권1호
    • /
    • pp.65-72
    • /
    • 2000
  • 본 논문에서는 쿼리 영상에 대하여 가장 정확하게 정합되는 영상을 찾기 위한 새로운 이진 영상 정합 방법인 퍼지 기반 하우스도르프 방법을 제안한다, 먼저 하우스도르프 거리를 이용하여 최소거리 분포를 얻은 후 반경에 해당하는 집함의 개수를 이용하여 소속함수로 표현한다. 제안한 방법에서는 소속함수로 정의된 거리 분포에 대하여 퍼지 추론과정을 도입하여 최종적인 정합 후보를 구하게 된다. 제안된 방법을 실제 잡음이 부가된 얼굴 영상과 문자 인식에 적용하여 그 성능을 검증하였다.

  • PDF

도로 노면 파손 탐지를 위한 배경 객체 인식 기반의 지도 학습을 활용한 성능 향상 알고리즘 (Performance Enhancement Algorithm using Supervised Learning based on Background Object Detection for Road Surface Damage Detection)

  • 심승보;전찬준;류승기
    • 한국ITS학회 논문지
    • /
    • 제18권3호
    • /
    • pp.95-105
    • /
    • 2019
  • 최근 들어 도로 노면 파손의 위치 정보를 수집하기 위한 영상 처리 기술에 대한 연구가 활발히 진행되고 있다. 대표적으로 차량에 탑재가 가능한 스마트폰이나 블랙박스를 통해 영상을 얻고 이를 영상처리 알고리즘을 사용하여 인식하는 기술이 주로 사용된다. GPS 모듈과 연계하여 실제 파손 위치를 파악할 때 가장 중요한 기술은 영상 처리 알고리즘인데, 근래에는 대부분 인공지능을 통한 알고리즘이 연구 주제로 주목받고 있다. 이와 같은 맥락에서 본 연구에서도 영역 기반의 합성곱 방식 계열의 객체인식 (Object Detection) 방법을 사용한 인공지능 영상 처리 알고리즘에 대하여 논의하고자 한다. 도로 노면 파손 객체 인식 성능을 향상시키기 위하여 도로 노면 파손 영상 600여 장과 일반적인 도로 주행 영상 1500여 장으로 학습 데이터베이스를 구성하였다. 또한 배경 객체 인식 방법을 적용한 지도 학습을 수행하여 도로 노면 파손의 오탐을 감소시켰다. 그 결과 동일한 테스트용 데이터베이스를 통해 알고리즘의 인식 성능을 mAP 평균값 기준 9.44%만큼 향상시킨 새로운 방법을 소개하고자 한다.

서베일런스 네트워크에서 적응적 색상 모델을 기초로 한 실시간 객체 추적 알고리즘 (Real-Time Object Tracking Algorithm based on Adaptive Color Model in Surveillance Networks)

  • 강성관;이정현
    • 디지털융복합연구
    • /
    • 제13권9호
    • /
    • pp.183-189
    • /
    • 2015
  • 본 논문은 서베일런스 네트워크에서 영상의 색상 정보를 이용한 객체 추적 방법을 제안한다. 이 방법은 적응적인 색상 모델을 이용한 객체 검출을 수행한다. 객체 윤곽선 검출은 객체 인식과 같은 응용에서 중요한 역할을 수행한다. 실험 결과는 색상과 크기에서 객체의 다양한 변화가 있을 때에도 성공적인 객체 검출을 증명한다. 실시간으로 객체를 검출하는 응용 분야에서 대량의 영상 데이터를 전송할 때 색상 분포의 형태를 찾아내는 것이 가능하다. 객체의 특정 색상 정보는 입력 영상에서 동적으로 변화하는 색상에서 자주 수정되어진다. 그래서, 이 알고리즘은 해당 추적 영역 안에서 객체의 추적 영역 정보를 탐지하고 그 객체의 움직임만을 추적한다. 실험을 통해, 본 논문은 어떤 이상적인 상황하에서 제안하는 객체 추적 알고리즘이 다른 방법보다 더 강인한 면이 있다는 것을 보여준다.

Object detection technology trend and development direction using deep learning

  • Kwak, NaeJoung;Kim, DongJu
    • International Journal of Advanced Culture Technology
    • /
    • 제8권4호
    • /
    • pp.119-128
    • /
    • 2020
  • Object detection is an important field of computer vision and is applied to applications such as security, autonomous driving, and face recognition. Recently, as the application of artificial intelligence technology including deep learning has been applied in various fields, it has become a more powerful tool that can learn meaningful high-level, deeper features, solving difficult problems that have not been solved. Therefore, deep learning techniques are also being studied in the field of object detection, and algorithms with excellent performance are being introduced. In this paper, a deep learning-based object detection algorithm used to detect multiple objects in an image is investigated, and future development directions are presented.