In this paper, we implemented an Ultra-Wideband radar system using Stripmap Synthetic Apertrure Radar algorithm to recognize objects inside a box. Different window functions such as Hanning, Hamming, Kaiser, and Taylor functions to improve image recognition performance are applied and implemented to radar system. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to recognize the conductor plate located inside 1m3 box. To obtain the image, we use the propagation data in the time domain according to the 1m movement distance and use the Range Doppler algorithm. The effect of different window functions to improve the recognition performance of the image are analyzed. From the compared results, we confirmed that the Kaiser window function can obtain a relatively good image.
4차산업 혁명 시대를 맞아, 기술의 변화가 다양한 분야에 적용되고 있다. 고지서 분야에서도 자동화, 디지털화, 데이터관리가 되고 있다. 사회에서 유통되는 고지서의 형태는 수만 가지 이상이며, 이를 자동화, 디지털화, 데이터관리를 위해서는 고지서 인식이 필수적이다. 현재 다양한 고지서들을 관리하기 위해서 OCR(Optical Character Recognition) 기술을 활용한다. 이때, 정확도를 높이기 위해, 먼저 고지서 양식을 인식하면, OCR 인식 시 더 높은 인식률을 가질 수 있다. 본 논문에서는 고지서 양식을 구분하기 위해 인덱스로 사용할 수 있는 로고를 객체 인식하였으며, 이때 로고의 크기가 전체 고지서 대비 작으므로 딥러닝 기술 중 FPN(Feature Pyramid Network)을 작은 객체 검출에 활용하였다. 결과적으로, 제안하는 알고리즘을 통해서 자원 낭비를 줄이고, OCR 인식 정확도를 높일 수 있었다.
Recently, many efforts have been made for research and application of object tracking system. However, introduced object tracking algorithms have limitations to adopt a realtime object tracking system with multi camera. In this paper, we present a novel background generation and target object recognition algorithm for realtime object tracking system with multi camera and implemented it.
본 논문은 GHT(Generalized Hough Transform)을 이용하여 물체의 위치, 회전각 및 크기변화를 인식하게 하는 것을 목표로 한다. 특히 회전 및 가려진 물체를 잘 인식함을 보이고자 한다. GHT는 일종의 모델베이스 물체인식 알고리즘으로써 먼저 물체의 정보를 R-table(Reference table) 형태로 저장한 뒤, 그 R-table을 사용하여 물체를 인식한다. 본 논문에서는 GHT 알고리즘을 실제적인 비젼 시스템에 적용하기 위하여 GHT 알고리즘을 개선하였다. 첫째, R-table 작성시 물체의 부분적인 경계선으로부터 R-table을 작성하였으며 영상을 디지털화 하였을 경우 발생되는 에러를 보상하기 위하여 클러스터링(clustering) 알고리즘을 사용하였다. 둘째, 기존의 Ballard의 GHT 알고리즘은 물체의 위치, 회전각 및 크기변화를 인식하기 위하여 4차원의 배열이 필요하지만 단지 2차원의 배열만으로 물체인식이 가능하도록 하였다. 특히 크기변화를 인식하는 간단한 방법을 제안하였다. 테스트 결과 제안된 GHT 알고리즘이 실제적인 비젼 시스템에 있어서 비교적 잘 동작함을 알 수 있었다. 특히 겹쳐진 물체를 잘 인식함을 알 수 있었다.
International Journal of Advanced Culture Technology
/
제10권2호
/
pp.252-259
/
2022
Artificial intelligence is used in fusion with image processing techniques using cameras. Image processing technology is a technology that processes objects in an image received from a camera in real time, and is used in various fields such as security monitoring and medical image analysis. If such image processing reduces the accuracy of recognition, providing incorrect information to medical image analysis, security monitoring, etc. may cause serious problems. Therefore, this paper uses a mixture of YOLOv4-tiny model and image processing algorithm and uses the COCO dataset for learning. The image processing algorithm performs five image processing methods such as normalization, Gaussian distribution, Otsu algorithm, equalization, and gradient operation. For RGB images, three image processing methods are performed: equalization, Gaussian blur, and gamma correction proceed. Among the nine algorithms applied in this paper, the Equalization and Gaussian Blur model showed the highest object detection accuracy of 96%, and the gamma correction (RGB environment) model showed the highest object detection rate of 89% outdoors (daytime). The image binarization model showed the highest object detection rate at 89% outdoors (night).
this paper, to represent the robot motion approximately in space, delas with algorithm for position recognition of space robot, target and obstacle with vision system in 2-D. And also there are algorithms for precise distance-measuring and calibration usign laser displacement system, and for trajectory selection for optimizing moving to object, and for robot locomtion with air-thrust valve. And the software synthesizing of these algorithms hleps operator to realize the situation certainly and perform the job without any difficulty.
In this paper, we aimed to develop associative pattern recognizer based on neural network for aircraft identification. For obtaining invariant feature space description of an object regardless of its scale change and rotation, Log-polar sampling technique recently developed partly due to its similarity to the human visual system was introduced with Fourier transform post-processing. In addition to the recognition results, image recall was associatively performed and also used for the visualization of the recognition reliability. The multilayer perceptron model was learned by backpropagation algorithm.
본 논문에서는 이동물체의 궤적을 인식하기 위하여 Condensation 알고리즘을 이용하였고, 인식된 궤적을 추적하기 위해서 퍼지추론을 이용한 퍼지제어기를 사용하였다. Condensation 알고리즘은 사전분포(prior distributions)를 통해서 사후분포(posterior distributions)를 얻는 베이지안 조건확률(Bayesian conditional probabilities)을 기반으로 한다. 추적시스템은 요(raw)운동과 롤(roll)운동을 통해 3차원 공간을 추적한다. 추적 시스템으로는 2링크 매니플레이터를 사용하였고, 매니플레이터의 관절각 ${\theta}_1$은 $0^{\circ}$ 에서 $360^{\circ}$ 까지 회전할 수 있으며, 관절각 ${\theta}_2$는 $0^{\circ}$ 에서 $180^{\circ}$ 까지 회전할 수 있다. 속도를 가진 움직이는 물체 궤적을 Condensation 알고리즘을 이용하여 거의 에러 없이 인식함을 보였고, 추적 시스템으로 하여, 공간상에서 주어진 궤적에 대해 시뮬레이션를 통해 제안한 알고리즘의 타당성을 입증하였다.
의료 영상처리 분야에서의 일반적인 객체 인식 방법은 영역 분할 알고리즘을 기반으로 처리되어진다. 컴퓨팅 분야에서의 이러한 영역 분할 알고리즘은 대부분 밝기 정보, 형태 정보, 패턴 분석 등 다양한 입력정보의 컴퓨팅 처리를 통해 처리된다. 그러나 이러한 컴퓨팅 방법으로는 앞서 언급된 입력 정보들이 의미가 없을 경우, 영역 분할에 많은 제약이 따르게 된다. 따라서 본 논문은 이러한 컴퓨팅 처리의 근본적인 제약사항을 해결하고자, MR 이론의 R2-map 정보 기반의 효과적인 영역 분할 방법은 제안하였다. 본 방법은 간 영역이 포함된 영상에서 실험하였으며, R2-map의 특징점들을 2차원 영역성장법의 씨앗점으로 설정한 후, 검출된 영역의 최종 경계선 보정작업을 통해 경계가 모호하더라도 영역 분할이 가능하게끔 하였다. 해당 영상의 실험 결과, 평균 7.5%의 평균 영역 차이로 기존의 대표 영역 분할 알고리즘에 비해 높은 정확도가 산출되었다.
본 논문에서는 캐리 전파가 없어 고속연산이 가능한 잉여수계를 이용하여 생산자동화 시스템에서 실시간 물체인식을 위한 디지털 뉴런프로세서의 구현방법을 제안하였다. 설계된 디지털 뉴런프로세서는 잉여수계를 이용한 MAC 연산기와 혼합계수 변환을 이용한 시그모이드 함수 연산부로 구성되며, 설계된 회로는 C언어 및 VHDL로 기술하였고 Compass 툴로 합성하였다. 최종적으로, LG 0.8${\mu}m$ CMOS 공정을 사용하여 Full Custom방식으로 설계를 수행하였다. 실험결과, 가장 나쁜 경로일 경우, 약 19nsec의 지연속도와 0.6ns의 연산속도를 보였고, 기존의 실수 연산기에 비하여 약 1/2배정도 하드웨어 크기를 줄일 수 있었다. 본 논문에서 설계한 디지털 뉴런프로세서는 실시간 처리를 요하는 생산자동화 시스템의 물체인식 시스템에 적용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.