• 제목/요약/키워드: Obesity-related genes

검색결과 136건 처리시간 0.023초

생쥐 비만모델에서 Weissella confusa WIKIM51 식이에 따른 지방합성 및 에너지 대사 조절로 인한 체지방 감소 효과 (Oral Administration of Weissella confusa WIKIM51 Reduces Body Fat Mass by Modulating Lipid Biosynthesis and Energy Expenditure in Diet-Induced Obese Mice)

  • 임슬기;이지은;박성수;김선용;박상민;목지예;장현아;최학종
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.135-146
    • /
    • 2022
  • 비만은 지질대사 불균형으로 인한 이상지질혈증과 밀접한 관련이 있으며, 장내 미생물의 군집 및 기능의 변화를 유도하여 장내 미생물 불균형을 초래할 수 있다. 본 연구에서는 민들레 김치에서 분리한 김치 유래 유산균 W. confuse WIKIM51의 항비만 효능을 in vitro와 in vivo에서 평가하였다. 먼저, WIKIM51은 지방세포 분화를 유도한 3T3-L1 세포에서 지방대사 관련 유전자의 발현 조절을 통해 지방구 생성을 억제하였다. 후천적 비만 동물 모델을 이용한 in vivo 실험에서 10주간 W. confusa WIKIM51의 경구 투여는 고지방식이에 의해 유도된 체중 증가를 현저히 감소시켰다. 특히, 부고환 주위 지방량, 조직학적 분석을 통한 지방구의 크기 및 혈중 지표인 TG, TC, adiponectin, 그리고 leptin의 수준이 HFD군에 비해 W. confusa WIKIM51 섭취군에서 유의적으로 개선되었다. 또한 W. confusa WIKIM51 섭취군은 Ppar𝛾, C/EBP𝛼, Srebp-1c, Fas와 같은 지방 생성 및 지방산 합성 관련 유전자의 발현을 억제하였고, 반면 에너지 소비 관련 유전자 Ppar𝛼와 Cpt1의 발현은 증가시켰다. 더 나아가, W. confusa WIKIM51은 고지방식이로 인해 유도된 Firmicutes/Bacteroidetes 비율을 정상식이군의 수준으로 감소시켜 장내미생물의 불균형을 개선시켰다. 이러한 결과들을 종합해 볼 때, W. confusa WIKIM51의 섭취는 고지방식이로 인한 지방 축적을 억제하여 효과적으로 비만을 개선할 수 있으며, 이는 항비만 기능성 소재 및 식품 개발로의 활용이 가능함을 제시한다.

삼황사심탕(三黃瀉心湯)이 수컷 생쥐의 비만(肥滿) 관련 대사질환(代謝疾患)에 미치는 영향 (Effects of Samhwangsasim-tang on obesity-related metabolic disease in mice)

  • 이주영;국윤범
    • 대한한의학방제학회지
    • /
    • 제22권1호
    • /
    • pp.93-104
    • /
    • 2014
  • Objectives : Samhwangsasim-tang (SHSST) is a traditional Korean medication, which has been used in Korea for treatment of hypertension and chest pain. Hyperlipidemia and inflammation could influence hypertension and chest pain. This study investigated whether and how SHSST reduces the hyperlipidemia and inflammation related to high-cholesterol diet-induced obesity in rats. Methods : Mice were divided randomly into four groups: the normal diet group, high-cholesterol diet group, low dose treatment group supplemented with 30% ethanol extract of SHSST (L) and high dose treatment group supplemented with 80% ethanol extract of SHSST (H). L and H groups were orally administered with SHSST at the dose of 50mg/kg a day respectively and others were administered with the same volume of physiological saline. Results : Administration of SHSST resulted in a decrease in serum levels of total cholesterol and low-density lipoprotein. Expression of hepatic genes(SREBP2, LXR, LDLR, and HMG-CoA) related with cholesterol metabolism was also suppressed. In addition, SHSST decreased the expression of inflammation-related gene (TNF-${\alpha}$, IL-6, ICAM-1, VCAM-1, TGF-${\beta}1$ and fibronectin). Histological examinations also showed that the size of the adipocytes was smaller in the SHSST treated group than in the high-colesterol diet group. In an in vitro study, SHSST inhibited the production of nitric oxide in a concentration-dependent manner. Conclusions : This study indicates that SHSST has anti-hyperlipidemia and anti-inflammatory effects. It may also suggest that SHSST may be alternative therapy for treatment of hyperlipidemia and its complications.

인삼과 진세노사이드의 항비만 효과에 대한 문헌 고찰 (Anti-Obese Effects of Ginseng/Ginsenosides : A Literature Review from 1983 to 2012)

  • 최문지;안진표;김애정;이명숙
    • 동아시아식생활학회지
    • /
    • 제24권3호
    • /
    • pp.335-350
    • /
    • 2014
  • Compared to the large numbers of studies on the diabetes, hyperlipidemia and cancer therpeutic effects of ginseng, the anti-obese effect and mechanisms of ginsengs have not been studied as much. To determine the effects of ginseng on obesity, 14 keywords (ginseng, ginsenoside, obesity, weight, fat, diet, overeat, appetite, lipid, 3T3-L1, adipocyte, food intake, adipogenesis and lipolysis) were combined in searching a database. Fifty-six articles published from 1983 to 2012 as well as 656 patents registered until Aug $17^{th}$, 2012, were screened for anti-obese effects of ginseng. In the classification of experimental methods, 16 papers on 3T3-L1 cells, 38 papers on animals and three papers on human were reviewed. In terms of obese mechanisms of action, the most commonly used biomarkers were in order of lipid profiles > weight change > blood glucose > adipocytokine. Most ginseng studies on obesity focused on AMPK, $PPAR{\gamma}$, GLUT-4, PI3K and SREBP-1. Korean white ginseng extracts and Re repressed the lipogenesis genes such as PPARc2, SREBP-1c, LPL, FAS and DGAT1. However, ginseng or ginsenosides, PD (Rb1) and PT (Re), showed different or contradictory results. Water and ethanol extraction of ginseng showed contradictory effects on the secretion of inflammatory cytokines, wheras IL-6 was repressed by ethanol extracts and TNF-${\alpha}$ repressed by Re in vitro. Based on the literature, further studies on anti-obese mechanisms of ginseng, such as the inflammation-related obesity or cross signals between the adipocytes and the environments, are needed, instead of more studies on its hypolipidemic and hypoglycemic effects.

DMBase: An Integrated Genetic Information Resource for Diabetes Mellitus

  • Lee, Sun-Young;Park, Young-Kyu;Kim, Jae-Heup;Kim, Young-Joo
    • Interdisciplinary Bio Central
    • /
    • 제3권2호
    • /
    • pp.6.1-6.3
    • /
    • 2011
  • Diabetes Mellitus (DM), often simply referred to as diabetes, has developed into a major health concern affecting more than 200 million people worldwide with approximately 4 million deaths per year attributed to the presence of the disease. Diabetes mellitus is categorized as Type 1 and Type 2, where Type 1 diabetes represents a lack of insulin production, and Type 2 diabetes is characterized by a relative lack of insulin receptor (i.e., decreased sensitivity to the effect of insulin) and cased by a complex interplay between genetic factors and environmental factors. Up to date, various studies on the pathology and mechanism in terms of genetic experiments have been conducted and approximately hundreds of genes were reported as diabetes mellitus associated genes. At this point, to support studies on the cause and mechanism of diabetes mellitus, an efficient database system to provide genetic variants related to diabetes mellitus is needed. DMBase is an integrated web-based genetic information resource for diabetes mellitus designed to service genomic variants, genes, and secondary information derived for diabetes mellitus genetics researchers. The current version of DMBase documents 754 genes with 3056 genetic variants and 66 pathways. It provides many effective search interfaces for retrieving diabetes mellitus and genetic information. A web interface for the DMBase is freely available at http://sysbio.kribb.re.kr/dmBase.

Effect of Korean pine nut oil on hepatic iron, copper, and zinc status and expression of genes and proteins related to iron absorption in diet-induced obese mice

  • Shin, Sunhye;Lim, Yeseo;Chung, Jayong;Park, Soyoung;Han, Sung Nim
    • Journal of Nutrition and Health
    • /
    • 제54권5호
    • /
    • pp.435-447
    • /
    • 2021
  • Purpose: Body adiposity is negatively correlated with hepatic iron status, and Korean pine nut oil (PNO) has been reported to reduce adiposity. Therefore, we aimed to study the effects of PNO on adiposity, hepatic mineral status, and the expression of genes and proteins involved in iron absorption. Methods: Five-week-old male C57BL/6 mice were fed a control diet containing 10% kcal from PNO (PC) or soybean oil (SBO; SC), or a high-fat diet (HFD) containing 35% kcal from lard and 10% kcal from PNO (PHFD) or SBO (SHFD). Hepatic iron, copper, and zinc content; and expression of genes and proteins related to iron absorption were measured. Results: HFD-fed mice had a higher white fat mass (2-fold; p < 0.001), lower hepatic iron content (25% lower; p < 0.001), and lower hepatic Hamp (p = 0.028) and duodenal Dcytb mRNA levels (p = 0.037) compared to the control diet-fed mice. Hepatic iron status was negatively correlated with body weight (r = -0.607, p < 0.001) and white fat mass (r = -0.745, p < 0.001). Although the PHFD group gained less body weight (18% less; p < 0.05) and white fat mass (18% less; p < 0.05) than the SHFD group, the hepatic iron status impaired by the HFD feeding did not improve. The expression of hepatic and duodenal ferroportin protein was not affected by the fat amount or the oil type. PNO-fed mice had significantly lower Slc11a2 (p = 0.022) and Slc40a1 expression (p = 0.027) compared to SBO-fed mice. However, the PC group had a higher Heph expression than the SC group (p < 0.05). The hepatic copper and zinc content did not differ between the four diet groups, but hepatic copper content adjusted by body weight was significantly lower in the HFD-fed mice compared to the control diet-fed mice. Conclusion: HFD-induced obesity decreased hepatic iron storage by affecting the regulation of genes related to iron absorption; however, the 18% less white fat mass in the PHFD group was not enough to improve the iron status compared to the SHFD group. The hepatic copper and zinc status was not altered by the fat amount or the oil type.

Anti-Obesity Effects of Starter Fermented Kimchi on 3T3-L1 Adipocytes

  • Lee, Kyung-Hee;Song, Jia-Le;Park, Eui-Seong;Ju, Jaehyun;Kim, Hee-Young;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • 제20권4호
    • /
    • pp.298-302
    • /
    • 2015
  • The anti-obesity effects of starter (Leuconostoc mesenteroides+Lactobacillus plantarum) fermented kimchi on 3T3-L1 adipocyte were studied using naturally fermented kimchi (NK), a functional kimchi (FK, NK supplemented with green tea), and FK supplemented with added starters (FKS). Oil red O staining and cellular levels of triglyceride (TG) and glycerol were used to evaluate the in vitro anti-obesity effects of these kimchis in 3T3-L1 cells. The expressions of adipogenesis/lipogenesis-related genes of peroxisome proliferator-active receptor (PPAR)-${\gamma}$, CCAAT/enhance-binding protein (C/EBP)-${\alpha}$, and fatty acid synthase (FAS) were determined by RT-PCR. Kimchis, especially FKS, markedly decreased TG levels and increased levels of intracellular glycerol and lipid lipolysis. In addition, FKS also reduced the mRNA levels of PPAR-${\gamma}$, C/EBP-${\alpha}$, and FAS, which are related to adipogenesis/lipogenesis in 3T3-L1 cells. These results suggest the anti-obesity effects of FKS were to due to enhanced lipolysis and reduced adipogenesis/lipogenesis in 3T3-L1 adipocytes.

Circulating microRNA expression profiling in young obese Korean women

  • Choi, Won Hee;Ahn, Jiyun;Um, Min Young;Jung, Chang Hwa;Jung, Sung Eun;Ha, Tae Youl
    • Nutrition Research and Practice
    • /
    • 제14권4호
    • /
    • pp.412-422
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: This study investigates correlations between circulating microRNAs (miRNAs) and obesity-related parameters among young women (aged 20-30 years old) in Korea. SUBJECTS/METHODS: We analyzed TaqMan low density arrays (TLDAs) of circulating miRNAs in 9 lean (body mass index [BMI] < 25 kg/㎡) and 15 obese (BMI > 25 kg/㎡) women. We also performed gene ontology (GO) analyses of the biological functions of predicted miRNA target genes, and clustered the results using the database for annotation, visualization and integrated discovery. RESULTS: The TLDA cards contain 754 human miRNAs; of these, the levels of 8 circulating miRNAs significantly declined (> 2-fold) in obese subjects compared with those in lean subjects, including miR-1227, miR-144-5p, miR-192, miR-320, miR-320b, miR-484, miR-324-3p, and miR-378. Among them, miR-484 and miR-378 displayed the most significant inverse correlations with BMI (miR-484, r = -0.5484, P = 0.0056; miR-378, r = -0.5538, P = 0.0050) and visceral fat content (miR-484, r = -0.6141, P = 0.0014; miR-378, r = -0.6090, P = 0.0017). GO analysis indicated that genes targeted by miR-484 and miR-378 had major roles in carbohydrate and lipid metabolism. CONCLUSION: Our result showed the differentially expressed circulating miRNAs in obese subjects compared to lean subjects. Although the mechanistic study to reveal the causal role of miRNAs remains, these miRNAs may be novel biomarkers for obesity.

고지방식이 비만 유도 마우스에서 자색옥수수 추출물의 항당뇨 및 항염증 효과 (Anti-Diabetic and Anti-Inflammatory Effects of Purple Corn Extract in High-Fat Diet Induced Obesity Mice)

  • 정현채;김채희;이예주;김순권;도명술
    • 한국식품영양학회지
    • /
    • 제30권4호
    • /
    • pp.696-702
    • /
    • 2017
  • Metabolic syndrome, including obesity, glucose intolerance and elevated blood pressure, is related to type 2 diabetes and cardiovascular disease. Previous studies have reported the anti-oxidative, anti-inflammatory and anti-diabetic effects of purple corn extract. We investigated the efficacy of purple corn extract (PC) against high-fat diet (HFD)-induced obesity and glucose intolerance, and examined the underlying mechanisms by analyzing expression of proteins and genes involved in glucose regulation and macrophage infiltration. C57BL/6 mice were fed with normal chow diet (ND), or HFD treated with distilled water (DW, control) or PC, for 10 weeks. Although body weights were similar in the HFD-fed groups, we observed a decrease in the liver and epididymal adipose tissue (EAT) weights, and enhanced glucose tolerance test (GTT) results in the PC group, as compared with DW group. Liver showed increased Akt phosphorylation in the PC-treated mice; however, no changes were observed in the EAT, for all groups. In PC-treated mice, decreased macrophage infiltration was seen in the EAT, with a reduced expression of macrophage marker genes. Finally, proinflammatory cytokine gene expressions were decreased by PC in the EAT, and a modest trend for downregulation was observed in the liver. Hence, we conclude that PC may decrease glucose intolerance by increasing the phosphorylation of Akt and reducing the macrophage infiltration into the EAT.

고지방식이 유도 비만 모델에서 백출과 사인 추출 혼합물이 체중 및 지질대사에 미치는 영향 (Effect of Mixture of Atractylodes macrocephala and Amomum villosum Extracts on Body Weight and Lipid Metabolism in High Fat Diet-Induced Obesity Model)

  • 김하림;권용관;최봉근;정현종;백동기
    • 동의생리병리학회지
    • /
    • 제34권2호
    • /
    • pp.75-80
    • /
    • 2020
  • In this study, we investigated the dose-dependent effects of mixtures of Atractylodes macrocephala (AM) and Amomum villosum (AV) water extracts in a ratio of 3:1 on high fat diet (HFD)-induced obesity model. Oral administration of various concentrations with mixtures of AM and AV extracts in a ratio of 3:1 for 6 weeks inhibited HFD-induced increases of body, liver and epididymal fat weights in a dose-dependent fashions. Those effects may be mediated by decreased expressions of lipogenesis-related genes such as acetyl coA carboxylase (ACC) and fatty acid synthase (FAS) in liver. Also, increase of insulin and decrease of adiponectin in serum by HFD supply were inhibited by three different dosages of mixtures of AM and AV extracts in a ratio of 3:1. HFD supply induced increases of serum total cholesterol, triglyceride and LDL cholesterol. However, hyperlipidemia was significantly decreased in dose-dependent manners by treatment with mixtures of AM and AV extracts. Based on the results of the present study, hypolipidemic and anti-obesity effects by mixtures of AM and AV extracts were found in HFD-induced obesity model. Further clinical investigation is needed to develop anti-obesity therapeutic or preventive agents by using mixtures of AM and AV extracts.

들깨 잎 추출물에서 분리한 Isoegomaketone(IK)의 항 비만 효능 (Anti-Obesity Effect of Isoegomaketone Isolated from Perilla frutescens (L.) Britt. cv. Leaves)

  • 소양강;조윤호;남보미;이승영;김진백;강시용;정혜광;진창현
    • 생약학회지
    • /
    • 제46권4호
    • /
    • pp.283-288
    • /
    • 2015
  • In this study, we investigated anti-obesity effect of isoegomaketone (IK) isolated from leaves extract of Perilla frutescens (L.) Britt. cv. We verified differentiation and lipid accumulation by Oil Red O staining in 3T3-L1 cells after IK treatment with differentiation media. IK inhibited mRNA expression of adipocyte specific genes that were related with differentiation of 3T3-L1 cells. We confirmed the effects of IK on body weight and visceral fat mass in obese mice. Mice were randomly divided into three groups; normal diet group (ND), high-fat diet group (HFD) and high-fat diet with IK group (HFD-IK). The obesity mice were induced by feeding the 45% high-fat diet to the C57BL/6J mice during 4 weeks. After HFD-IK was orally administered 10 mg/kg of IK. As a result, the body weight of HFD and HFD-IK was increased 2.4 times and 1.7 times of ND, respectively. Also visceral fat mass of HFD was increased 24 times but in the case of HFD-IK was increased to 13 times in comparison with ND. Taken together, our findings suggest that IK reduced differentiation and adiogenesis in 3T3-L1 cells, decreased the body weight and visceral fat mass in obesity mice. These results suggest that IK may have a potential benefit as anti-obesity material.