DOI QR코드

DOI QR Code

Circulating microRNA expression profiling in young obese Korean women

  • Choi, Won Hee (Division of Food Functionality Research, Korea Food Research Institute) ;
  • Ahn, Jiyun (Division of Food Functionality Research, Korea Food Research Institute) ;
  • Um, Min Young (Division of Food Functionality Research, Korea Food Research Institute) ;
  • Jung, Chang Hwa (Division of Food Functionality Research, Korea Food Research Institute) ;
  • Jung, Sung Eun (Departments of Nursing and Dental Hygiene, Andong Science College) ;
  • Ha, Tae Youl (Division of Food Functionality Research, Korea Food Research Institute)
  • Received : 2019.12.30
  • Accepted : 2020.04.14
  • Published : 2020.08.01

Abstract

BACKGROUND/OBJECTIVES: This study investigates correlations between circulating microRNAs (miRNAs) and obesity-related parameters among young women (aged 20-30 years old) in Korea. SUBJECTS/METHODS: We analyzed TaqMan low density arrays (TLDAs) of circulating miRNAs in 9 lean (body mass index [BMI] < 25 kg/㎡) and 15 obese (BMI > 25 kg/㎡) women. We also performed gene ontology (GO) analyses of the biological functions of predicted miRNA target genes, and clustered the results using the database for annotation, visualization and integrated discovery. RESULTS: The TLDA cards contain 754 human miRNAs; of these, the levels of 8 circulating miRNAs significantly declined (> 2-fold) in obese subjects compared with those in lean subjects, including miR-1227, miR-144-5p, miR-192, miR-320, miR-320b, miR-484, miR-324-3p, and miR-378. Among them, miR-484 and miR-378 displayed the most significant inverse correlations with BMI (miR-484, r = -0.5484, P = 0.0056; miR-378, r = -0.5538, P = 0.0050) and visceral fat content (miR-484, r = -0.6141, P = 0.0014; miR-378, r = -0.6090, P = 0.0017). GO analysis indicated that genes targeted by miR-484 and miR-378 had major roles in carbohydrate and lipid metabolism. CONCLUSION: Our result showed the differentially expressed circulating miRNAs in obese subjects compared to lean subjects. Although the mechanistic study to reveal the causal role of miRNAs remains, these miRNAs may be novel biomarkers for obesity.

Keywords

References

  1. Ortega FJ, Mercader JM, Catalan V, Moreno-Navarrete JM, Pueyo N, Sabater M, Gomez-Ambrosi J, Anglada R, Fernandez-Formoso JA, Ricart W, Fruhbeck G, Fernandez-Real JM. Targeting the circulating microRNA signature of obesity. Clin Chem 2013;59:781-92. https://doi.org/10.1373/clinchem.2012.195776
  2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  3. Nouraee N, Mowla SJ, Calin GA. Tracking miRNAs' footprints in tumor-microenvironment interactions: insights and implications for targeted cancer therapy. Genes Chromosomes Cancer 2015;54:335-52. https://doi.org/10.1002/gcc.22244
  4. Nolte-'t Hoen EN, Van Rooij E, Bushell M, Zhang CY, Dashwood RH, James WP, Harris C, Baltimore D. The role of microRNA in nutritional control. J Intern Med 2015;278:99-109. https://doi.org/10.1111/joim.12372
  5. Presnell SR, Al-Attar A, Cichocki F, Miller JS, Lutz CT. Human natural killer cell microRNA: differential expression of MIR181A1B1 and MIR181A2B2 genes encoding identical mature microRNAs. Genes Immun 2015;16:89-98. https://doi.org/10.1038/gene.2014.65
  6. Qiu ZL, Shen CT, Song HJ, Wei WJ, Luo QY. Differential expression profiling of circulation microRNAs in PTC patients with non-131I and 131I-avid lungs metastases: a pilot study. Nucl Med Biol 2015;42:499-504. https://doi.org/10.1016/j.nucmedbio.2015.01.009
  7. Tsochandaridis M, Nasca L, Toga C, Levy-Mozziconacci A. Circulating microRNAs as clinical biomarkers in the predictions of pregnancy complications. BioMed Res Int 2015;2015:294954.
  8. Keller A, Leidinger P, Bauer A, Elsharawy A, Haas J, Backes C, Wendschlag A, Giese N, Tjaden C, Ott K, Werner J, Hackert T, Ruprecht K, Huwer H, Huebers J, Jacobs G, Rosenstiel P, Dommisch H, Schaefer A, Muller-Quernheim J, Wullich B, Keck B, Graf N, Reichrath J, Vogel B, Nebel A, Jager SU, Staehler P, Amarantos I, Boisguerin V, Staehler C, Beier M, Scheffler M, Buchler MW, Wischhusen J, Haeusler SF, Dietl J, Hofmann S, Lenhof HP, Schreiber S, Katus HA, Rottbauer W, Meder B, Hoheisel JD, Franke A, Meese E. Toward the blood-borne miRNome of human diseases. Nat Methods 2011;8:841-3. https://doi.org/10.1038/nmeth.1682
  9. Papadopoulos EI, Yousef GM, Scorilas A. Gemcitabine impacts differentially on bladder and kidney cancer cells: distinct modulations in the expression patterns of apoptosis-related microRNAs and BCL2 family genes. Tumour Biol 2015;36:3197-207. https://doi.org/10.1007/s13277-014-2190-8
  10. Lorenzen JM. Vascular and circulating microRNAs in renal ischaemia-reperfusion injury. J Physiol 2015;593:1777-84. https://doi.org/10.1113/JP270318
  11. Russo F, Di Bella S, Nigita G, Macca V, Lagana A, Giugno R, Pulvirenti A, Ferro A. miRandola: extracellular circulating microRNAs database. PLoS One 2012;7:e47786. https://doi.org/10.1371/journal.pone.0047786
  12. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008;105:10513-8. https://doi.org/10.1073/pnas.0804549105
  13. Seeger T, Fischer A, Muhly-Reinholz M, Zeiher AM, Dimmeler S. Long-term inhibition of miR-21 leads to reduction of obesity in db/db mice. Obesity (Silver Spring) 2014;22:2352-60. https://doi.org/10.1002/oby.20852
  14. Yeh CL, Cheng IC, Hou YC, Wang W, Yeh SL. MicroRNA-125a-3p expression in abdominal adipose tissues is associated with insulin signalling gene expressions in morbid obesity: observations in Taiwanese. Asia Pac J Clin Nutr 2014;23:331-7.
  15. Oger F, Gheeraert C, Mogilenko D, Benomar Y, Molendi-Coste O, Bouchaert E, Caron S, Dombrowicz D, Pattou F, Duez H, Eeckhoute J, Staels B, Lefebvre P. Cell-specific dysregulation of microRNA expression in obese white adipose tissue. J Clin Endocrinol Metab 2014;99:2821-33. https://doi.org/10.1210/jc.2013-4259
  16. Wang R, Hong J, Cao Y, Shi J, Gu W, Ning G, Zhang Y, Wang W. Elevated circulating microRNA-122 is associated with obesity and insulin resistance in young adults. Eur J Endocrinol 2015;172:291-300. https://doi.org/10.1530/EJE-14-0867
  17. Kilic ID, Dodurga Y, Uludag B, Alihanoglu YI, Yildiz BS, Enli Y, Secme M, Bostanci HE. MicroRNA -143 and -223 in obesity. Gene 2015;560:140-2. https://doi.org/10.1016/j.gene.2015.01.048
  18. Heneghan HM, Miller N, McAnena OJ, O'Brien T, Kerin MJ. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab 2011;96:E846-50. https://doi.org/10.1210/jc.2010-2701
  19. Arner P, Kulyte A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 2015;11:276-88. https://doi.org/10.1038/nrendo.2015.25
  20. Kloting N, Berthold S, Kovacs P, Schon MR, Fasshauer M, Ruschke K, Stumvoll M, Bluher M. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 2009;4:e4699. https://doi.org/10.1371/journal.pone.0004699
  21. Mentzel CM, Anthon C, Jacobsen MJ, Karlskov-Mortensen P, Bruun CS, Jorgensen CB, Gorodkin J, Cirera S, Fredholm M. Gender and obesity specific microRNA expression in adipose tissue from lean and obese pigs. PLoS One 2015;10:e0131650. https://doi.org/10.1371/journal.pone.0131650
  22. Oh SW, Shin SA, Yun YH, Yoo T, Huh BY. Cut-off point of BMI and obesity-related comorbidities and mortality in middle-aged Koreans. Obes Res 2004;12:2031-40. https://doi.org/10.1038/oby.2004.254
  23. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 2007;8:R183. https://doi.org/10.1186/gb-2007-8-9-r183
  24. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011;11:85-97. https://doi.org/10.1038/nri2921
  25. Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr 2017;12:23. https://doi.org/10.1186/s12263-017-0577-z
  26. Quinet EM, Savio DA, Halpern AR, Chen L, Schuster GU, Gustafsson JA, Basso MD, Nambi P. Liver X receptor (LXR)-beta regulation in LXRalpha-deficient mice: implications for therapeutic targeting. Mol Pharmacol 2006;70:1340-9. https://doi.org/10.1124/mol.106.022608
  27. Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 2009;15:287-93. https://doi.org/10.1261/rna.1211209
  28. Wang K, Long B, Jiao JQ, Wang JX, Liu JP, Li Q, Li PF. MiR-484 regulates mitochondrial network through targeting Fis1. Nat Commun 2012;3:781. https://doi.org/10.1038/ncomms1770
  29. Yoon Y, Galloway CA, Jhun BS, Yu T. Mitochondrial dynamics in diabetes. Antioxid Redox Signal 2011;14:439-57. https://doi.org/10.1089/ars.2010.3286