• Title/Summary/Keyword: OWL-Net

Search Result 19, Processing Time 0.021 seconds

Orbit Determination of KOMPSAT-1 and Cryosat-2 Satellites Using Optical Wide-field Patrol Network (OWL-Net) Data with Batch Least Squares Filter

  • Lee, Eunji;Park, Sang-Young;Shin, Bumjoon;Cho, Sungki;Choi, Eun-Jung;Jo, Junghyun;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.19-30
    • /
    • 2017
  • The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data were determined to be tens of arcsec and sub-degree level, respectively.

Angles-Only Initial Orbit Determination of Low Earth Orbit (LEO) Satellites Using Real Observational Data

  • Hwang, Hyewon;Park, Sang-Young;Lee, Eunji
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.187-197
    • /
    • 2019
  • The Optical Wide-field patroL-Network (OWL-Net) is a Korean optical space surveillance system used to track and monitor objects in space. In this study, the characteristics of four Initial Orbit Determination (IOD) methods were analyzed using artificial observational data from Low Earth Orbit satellites, and an appropriate IOD method was selected for use as the initial value of Precise Orbit Determination using OWL-Net data. Various simulations were performed according to the properties of observational data, such as noise level and observational time interval, to confirm the characteristics of the IOD methods. The IOD results produced via the OWL-Net observational data were then compared with Two Line Elements data to verify the accuracy of each IOD method. This paper, thus, suggests the best method for IOD, according to the properties of angles-only data, for use even when the ephemeris of a satellite is unknown.

Determination of Geostationary Orbits (GEO) Satellite Orbits Using Optical Wide-Field Patrol Network (OWL-Net) Data

  • Shin, Bumjoon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.169-180
    • /
    • 2019
  • In this study, a batch least square estimator that utilizes optical observation data is developed and utilized to determine geostationary orbits (GEO). Through numerical simulations, the effects of error sources, such as clock errors, measurement noise, and the a priori state error, are analyzed. The actual optical tracking data of a GEO satellite, the Communication, Ocean and Meteorological Satellite (COMS), provided by the optical wide-field patrol network (OWL-Net) is used with the developed batch filter for orbit determination. The accuracy of the determined orbit is evaluated by comparison with two-line elements (TLE) and confirmed as proper for the continuous monitoring of GEO objects. Also, the measurement residuals are converged to several arcseconds, corresponding to the OWL-Net performance. Based on these analyses, it is verified that the independent operation of electro-optic space surveillance systems is possible, and the ephemerides of space objects can be obtained.

Integrity Assessment and Verification Procedure of Angle-only Data for Low Earth Orbit Space Objects with Optical Wide-field PatroL-Network (OWL-Net)

  • Choi, Jin;Jo, Jung Hyun;Kim, Sooyoung;Yim, Hong-Suh;Choi, Eun-Jung;Roh, Dong-Goo;Kim, Myung-Jin;Park, Jang-Hyun;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • The Optical Wide-field patroL-Network (OWL-Net) is a global optical network for Space Situational Awareness in Korea. The primary operational goal of the OWL-Net is to track Low Earth Orbit (LEO) satellites operated by Korea and to monitor the Geostationary Earth Orbit (GEO) region near the Korean peninsula. To obtain dense measurements on LEO tracking, the chopper system was adopted in the OWL-Net's back-end system. Dozens of angle-only measurements can be obtained for a single shot with the observation mode for LEO tracking. In previous work, the reduction process of the LEO tracking data was presented, along with the mechanical specification of the back-end system of the OWL-Net. In this research, we describe an integrity assessment method of time-position matching and verification of results from real observations of LEO satellites. The change rate of the angle of each streak in the shot was checked to assess the results of the matching process. The time error due to the chopper rotation motion was corrected after re-matching of time and position. The corrected measurements were compared with the simulated observation data, which were taken from the Consolidated Prediction File from the International Laser Ranging Service. The comparison results are presented in the In-track and Cross-track frame.

OWL-Net: A global network of robotic telescopes

  • Kim, Myung-Jin;Yim, Hong-Suh;Roh, Dong-Goo;Choi, Jun;Park, Jang-Hyun;Kyeong, Jaemann;Park, Young-Sik;Jo, Jung Hyun;Han, Wonyong;Yu, Jiwoong;Moon, Hong-Kyu;Park, Yoon-Ho;Cho, Sungki;Choi, Yong-Jun;Choi, Eun-Jung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2021
  • OWL-Net (Optical Wide-field patroL Network) is the first space situational awareness facility of its kind in South Korea which consists of five identical 0.5 m wide-field telescopes with 4K by 4K CCDs. The five stations are located in Mongolia, Morocco, Israel, United States, and South Korea. They are being operated in fully autonomous mode with the minimum human intervention. The primary objective of OWL-Net is to track Korean domestic satellites. In addition, it can be possible to conduct time-series photometry of bright solar system objects. We will present the system overview of the OWL-Net telescopes and progress report.

  • PDF

Magnitude Standardization Procedure for OWL-Net Optical Observations of LEO Satellites

  • Roh, Dong-Goo;Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Park, Sun-Youp;Park, Maru;Choi, Young-Jun;Bae, Young-Ho;Park, Young-Sik;Jang, Hyun-Jung;Cho, Sungki;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • As a governmentally approved domestic entity for Space Situational Awareness, Korea Astronomy and Space Science Institute (KASI) is developing and operating an optical telescopes system, Optical Wide-field PatroL (OWL) Network. During the test phase of this system, it is necessary to determine the range of brightness of the observable satellites. We have defined standard magnitude for Low Earth Orbit (LEO) satellites to calibrate their luminosity in terms of standard parameters such as distance, phase angle, and angular rate. In this work, we report the optical brightness range of five LEO Satellites using OWL-Net.

Precise Orbit Determination Based on the Unscented Transform for Optical Observations

  • Hwang, Hyewon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.249-264
    • /
    • 2019
  • In this study, the precise orbit determination (POD) software is developed for optical observation. To improve the performance of the estimation algorithm, a nonlinear batch filter, based on the unscented transform (UT) that overcomes the disadvantages of the least-squares (LS) batch filter, is utilized. The LS and UT batch filter algorithms are verified through numerical simulation analysis using artificial optical measurements. We use the real optical observation data of a low Earth orbit (LEO) satellite, Cryosat-2, observed from optical wide-field patrol network (OWL-Net), to verify the performance of the POD software developed. The effects of light travel time, annual aberration, and diurnal aberration are considered as error models to correct OWL-Net data. As a result of POD, measurement residual and estimated state vector of the LS batch filter converge to the local minimum when the initial orbit error is large or the initial covariance matrix is smaller than the initial error level. However, UT batch filter converges to the global minimum, irrespective of the initial orbit error and the initial covariance matrix.

Correlation Between the “seeing FWHM” of Satellite Optical Observations and Meteorological Data at the OWL-Net Station, Mongolia

  • Bae, Young-Ho;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Park, Sun-Youp;Moon, Hong Kyu;Choi, Young-Jun;Jang, Hyun-Jung;Roh, Dong-Goo;Choi, Jin;Park, Maru;Cho, Sungki;Kim, Myung-Jin;Choi, Eun-Jung;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.137-146
    • /
    • 2016
  • The correlation between meteorological data collected at the optical wide-field patrol network (OWL-Net) Station No. 1 and the seeing of satellite optical observation data was analyzed. Meteorological data and satellite optical observation data from June 2014 to November 2015 were analyzed. The analyzed meteorological data were the outdoor air temperature, relative humidity, wind speed, and cloud index data, and the analyzed satellite optical observation data were the seeing full-width at half-maximum (FWHM) data. The annual meteorological pattern for Mongolia was analyzed by collecting meteorological data over four seasons, with data collection beginning after the installation and initial set-up of the OWL-Net Station No. 1 in Mongolia. A comparison of the meteorological data and the seeing of the satellite optical observation data showed that the seeing degrades as the wind strength increases and as the cloud cover decreases. This finding is explained by the bias effect, which is caused by the fact that the number of images taken on the less cloudy days was relatively small. The seeing FWHM showed no clear correlation with either temperature or relative humidity.

Development of Standardized Korean Plant Ontology for International Harmonization of Environmental and Ecological Knowledge Bases (환경·생태 지식베이스의 국제적 조화를 위한 한국형 표준 식물 온톨로지 개발)

  • Eunjeong Ju;Hunjoo Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.201-209
    • /
    • 2023
  • Background: To describe domain knowledge consistently and precisely, the establishment of a controlled vocabulary, a so-called ontology, is essential. Internationally, the plant ontology (PO) in the ecology field has been developed for the anatomy and developmental stages of plants in English, Spanish, and Japanese, but there is no Korean version of the PO due to a lack of knowledge on standardization for Korean plants. Objectives: We aimed to establish a Korean plant ontology with core PO architectures. Methods: The latest ontology web language (OWL)-formatted raw version of the PO was collected from the PO consortium site. A formal workflow process and OWL file-handing tools for efficient Korean content development were conducted and executed. Results: The macro- and micro-perspective frameworks of the PO were presented by analyzing the upper model and the internal OWL-leveled physical structure, respectively. We developed and validated Korean knowledge content for a total of 1,957 classes included in the PO and transplanted them into an ontology modeling system. Conclusions: A Korean plant ontology was established for international harmonization through improved compatibility and data exchangeability with multilingual environmental and ecological knowledge bases.

WordNet-Based Category Utility Approach for Author Name Disambiguation (저자명 모호성 해결을 위한 개념망 기반 카테고리 유틸리티)

  • Kim, Je-Min;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.225-232
    • /
    • 2009
  • Author name disambiguation is essential for improving performance of document indexing, retrieval, and web search. Author name disambiguation resolves the conflict when multiple authors share the same name label. This paper introduces a novel approach which exploits ontologies and WordNet-based category utility for author name disambiguation. Our method utilizes author knowledge in the form of populated ontology that uses various types of properties: titles, abstracts and co-authors of papers and authors' affiliation. Author ontology has been constructed in the artificial intelligence and semantic web areas semi-automatically using OWL API and heuristics. Author name disambiguation determines the correct author from various candidate authors in the populated author ontology. Candidate authors are evaluated using proposed WordNet-based category utility to resolve disambiguation. Category utility is a tradeoff between intra-class similarity and inter-class dissimilarity of author instances, where author instances are described in terms of attribute-value pairs. WordNet-based category utility has been proposed to exploit concept information in WordNet for semantic analysis for disambiguation. Experiments using the WordNet-based category utility increase the number of disambiguation by about 10% compared with that of category utility, and increase the overall amount of accuracy by around 98%.