• Title/Summary/Keyword: ORC System

Search Result 78, Processing Time 0.026 seconds

Speed Estimation Method of Turbine and Generator using Variable Frequency type PR controller and Positive-phase-sequence Component Computation in ORC Generation System (ORC 발전 시스템에서 주파수 가변형 PR 제어기와 정상분 추출을 이용한 발전기 속도추정 방법)

  • Park, Hyung-Seok;Heo, Hong-Jun;Kim, Jang-Mok
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.377-378
    • /
    • 2015
  • 본 논문에서는 유기랭킨 사이클(organic rankine cycle: ORC) 발전 시스템에서 터빈과 발전기의 속도를 추정하는 방법을 제안한다. 다이오드 정류기에 의해 왜곡된 발전기 3상 단자 전압은 PLL 기법을 이용한 속도추정의 성능을 저하시키므로, 정상분 추출과 맥동성분 제거를 위한 상태관측기와 주파수 가변형 PR 제어기를 동기좌표계 PLL 기법에 적용하여 발전기의 속도를 추정한다. 제안하는 터빈과 발전기의 속도추정 방법은 실험 결과를 통해 그 성능을 검증한다.

  • PDF

Performance Characteristics Analysis of Combined Cycle Using Regenerative Organic Rankine Cycle and LNG Cold Energy (LNG 냉열과 재생 유기 랭킨 사이클을 이용한 복합 사이클의 성능 특성 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;HAN, CHUL HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.234-241
    • /
    • 2020
  • This paper presents a thermodynamic performance analysis of a combined cycle consisting of regenerative organic Rankine cycle (ORC) and liquefied natural gas (LNG) Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the system performances are analyzed in the aspect of thermodynamics. The effects of the turbine inlet pressure and the working fluid on the system performance such as the mass flow rates, heat transfers at heat exchangers, power productions at turbines, and thermal efficiency are systematically investigated. The results show that the thermodynamic performance of ORC such as net power production and thermal efficiency can be significantly improved by the regenerative ORC and the LNG cold energy.

Performance Characteristics of Organic Rankine Cycles Using Medium Temperature District Heating Water as Heat Source (지역난방용 중온수 열원 유기랭킨사이클 성능 특성)

  • Park, Woo-Jin;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • It is becoming increasingly important to make use of alternative energy source. because It is not able to rely on only fossil fuel for the recent increasing demand of energy consumption. With this situation, lots of studies for utilizing low grade energy such as industrial waste heat, solar energy, and geothermal energy have been conducted. The aim of this study is to predict the operation characteristics of working fluid by using performance analysis program (ThermoFlex) through the system analysis which is not mixing district return water but using ORC(Organic Rankine Cycle, hereinafter ORC) as a downstream cycle when accumulating district heating (hereinafter DH). In this study, We conducted the performance analysis for the case which has the district heating water temperature($120^{\circ}C$) and Flow rate of $163m^3/h$ (including District Heating return water flow), and examined several working fluid which is proper to this temperature. The case using R245fa (which is the best-case) showed 269.2kW power output, 6.37% efficiency. Additionally, Cut down on fuel was expected because of the boiler inlet temperature increase by being Formed $57.3{\sim}85^{\circ}C$ in a temperature of district heating return water, depending on a pressure change of a condenser in ORC system.

  • PDF

200kW Turbine Development for Organic Rankine Cycle System (200kW급 ORC용 터빈 개발)

  • Lim, Hyung-Soo;Choi, Bum-Seog;Park, Moo-Ryong;Park, Jun-Young;Yoo, Il-Su;Seo, Jeong-Min;Hwang, Soon-Chan;Yoon, Eui-Soo;Han, Sang-Jo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.107-113
    • /
    • 2013
  • This paper presents the process of turbine development for Organic Rankine Cycle(ORC) system. Development of turbine for ORC system is hot issue in the electric generation market due to the characteristic of organic refrigerant which the evaporate temperature is lower than general refrigerant. Recently, the industry have an interest about ORC turbine development in Korea, and they presented numerous research results. In developing the turbine, several processes can be considered. However, there was few document about ORC turbine development because of the trade secret. This paper can be used as a reference in developing ORC turbine.

An Experimental Study on the Organic Rankine Cycle to Utilize Fluctuating Thermal Energy (가변열원에 대응하기 위한 ORC 사이클의 실험적인 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.13-21
    • /
    • 2015
  • The system design of the Organic Rankine Cycle(ORC) is greatly influenced by the thermal properties such as the temperature or the thermal capacity of heat source. Typically waste heat, solar energy, geothermal energy, and so on are used as the heat source for the ORC. However, thermal energy supplying from these kinds of heat sources cannot be provided constantly. Hence, an experimental study was conducted to utilize fluctuating thermal energy efficiently. For this experiment, an impulse turbine and supersonic nozzles were applied and the supersonic nozzle was used to increase the velocity at the nozzle exit. In addition, these nozzles were used to adjust the mass flowrate depending on the amount of the supplied thermal energy. The experiment was conducted with maximum three nozzles due to the capacity of thermal energy. The experimented results were compared with the predicted results. The experiment showed that the useful output power could be producted from low-grade thermal energy as well as fluctuating thermal energy.

Fabrication and Study on the Performance Characteristics of a Scroll Expander for Organic Rankine Cycle (유기랭킨사이클용 소형 스크롤 팽창기 제작 및 성능 특성 연구)

  • Baek, Seungdong;Sung, Taehong;Lee, Minseok;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.50-56
    • /
    • 2016
  • In this work, the open-drive oil free air compressor is modified to activate an organic Rankine cycle system as an expanding machine. The shape of the modified scroll expander case is a rectangular parallelepiped and the size of the case is $0.0394m^3$. The scroll expander is operated in an ORC using R245fa as working fluid with various working conditions for the performance test. The test data points are used to calculate the parameters of the scroll expander semi-empirical simulation model. The simulation results are compared with the experimental results to validate the simulation model.

Study on Organic Rankine Cycle (ORC) for Maximum Power Extraction from Low-Temperature Energy Source (저온 열원으로부터 최대 동력을 생산하기 위한 유기랭킨사이클(ORC)에 관한 연구)

  • Kim, Kyoung-Hoon;Han, Chul-Ho;Kim, Gi-Man
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.73-79
    • /
    • 2011
  • ORC(organic Rankine cycle) has potential of reducing consumption of fossil fuels and has many favorable characteristics to exploit low-temperature heat sources. This work analyzes performance of ORC with superheating using low-temperature energy sources in the form of sensible energy. Maximum mass flow rate of a working fluid relative to that of a source fluid is considerd to extract maximum power from the sources. Working fluids of R134a, $iC_4H_{10}$ and $C_6C_6$, and source temperatures of $120^{\circ}C$, $200^{\circ}C$ and $300^{\circ}C$ are considered in this work. Results show that for a fixed source temperature thermal efficiency increases with evaporating temperaure, however net work per unit mass of source fluid has a maximum with respect to the evaporating temperature in the range of low source temperature. Results also show that the maximum power extraction is possible with R134a for the source temperature of $120^{\circ}C$, with $iC_4H_{10}$ for $200^{\circ}C$, and with $C_6C_6$ for $300^{\circ}C$.

Evaluation of Performance and Economics of Organic Rankine Cycle Integrated into Combined Cycle Cogeneration Plant (복합열병합발전소에 적용된 유기랭킨사이클의 성능 및 경제성 평가)

  • Kim, In Seop;Kim, Chang Min;Kim, Tong Seop;Lee, Jong Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • This study aimed to analyze organic Rankine cycle(ORC) which recovers discarded heat from a gas turbine based combined cycle cogeneration(CC-cogen) plant in terms of both performance and economics. The nominal electric power of the CC-cogen plant is around $120MW_e$, and heat for district heating is $153MW_{th}$. The major purpose of this study is to compare various options in selecting heat source of the ORC. Three heat sources were compared. Case 1 uses the exhaust gas from the HRSG, which is purely wasted to environment in normal plant operation without ORC. Case 2 also uses the exhaust gas from the HRSG. On the other hand, in this case, the DH economizer, which is located at the end of the HRSG, does not operate. Case 3 generates power using some of the district heating water which is supplied to consumers. The estimated ORC power generation ranges between 0.3 to 2.3% of the power generation capacity of the CC-cogen plant. Overall, Case 3 is evaluated to be better than other two options in terms of system design flexibility and power generation capacity.

Exergy and Entransy Performance Characteristics of Cogeneration System in Parallel Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 병렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;KIM, KYOUNGJIN;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.77-85
    • /
    • 2021
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of an organic Rankine cycle (ORC) and an additional process heater in a parallel circuit. Special attention is paid to the effects of the source temperature, turbine inlet pressure, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrancy analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

Exergy and Entransy Performance Characteristics of Cogeneration System in Series Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 직렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.637-645
    • /
    • 2020
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of a regenerative organic rankine cycle (ORC) and an additional process heater in a series circuit. Special attention is paid to the effects of the turbine inlet pressure, source temperature, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrance analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.