• Title/Summary/Keyword: OFDMA System

Search Result 226, Processing Time 0.026 seconds

Energy-Efficient Power Allocation for Cognitive Radio Networks with Joint Overlay and Underlay Spectrum Access Mechanism

  • Zuo, Jiakuo;Zhao, Li;Bao, Yongqiang;Zou, Cairong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.471-479
    • /
    • 2015
  • Traditional designs of cognitive radio (CR) focus on maximizing system throughput. In this paper, we study the joint overlay and underlay power allocation problem for orthogonal frequency-division multiple access-based CR. Instead of maximizing system throughput, we aim to maximize system energy efficiency (EE), measured by a "bit per Joule" metric, while maintaining the minimal rate requirement of a given CR system, under the total power constraint of a secondary user and interference constraints of primary users. The formulated energy-efficient power allocation (EEPA) problem is nonconvex; to make it solvable, we first transform the original problem into a convex optimization problem via fractional programming, and then the Lagrange dual decomposition method is used to solve the equivalent convex optimization problem. Finally, an optimal EEPA allocation scheme is proposed. Numerical results show that the proposed method can achieve better EE performance.

A Heuristic Method for Channel Allocation and Scheduling in an OFDMA System

  • Hwang, Sung-Ho;Park, Joon-Goo;Jang, Youn-Seon;Cho, Ho-Shin
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.741-743
    • /
    • 2008
  • In this letter, a heuristic channel allocation and scheduling scheme is proposed. By comparing the size of the alternative-factor assessment, which is obtained by simple calculation, we can easily find the most appropriate channel for each user for overall throughput enhancement. Numerical results show that the downlink throughput of the proposed scheme is higher than that of proportional fairness and is almost the same as that of the maximum C/I scheme, while user fairness remains better than that of the maximum C/I scheme.

  • PDF

Multi-node Frequency Synchronization Method for Distributed Networks (분산 네트워크를 위한 다수 노드 주파수 동기화 방식)

  • Kim, Jung-Hyun;Kim, Ji-Hyung;Lim, Kwang-Jae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3C
    • /
    • pp.251-258
    • /
    • 2012
  • In this paper, we propose a novel method of multi-node frequency synchronization for distributed networks. The proposed method synchronizes carrier frequencies of all nodes in the network and this enables new entry node to synchronize immediately. Moreover, when several groups exist in the network, inter-group synchronization method is proposed. The proposed distributed frequency synchronization method is expected to be very useful for the military operation scenario that new node entry is in a state of flux and group merging and splitting frequently happen.

Increasing Throughput using Bandwidth and Region Division with Frequency Overlay over Multicell Environments (다중 셀 환경에서 주파수 오버레이를 이용한 대역 및 영역 분할 기법에서의 데이터 전송률 향상)

  • Oh, Tae-Geun;Son, Hyuk-Min;Lee, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.245-246
    • /
    • 2008
  • A cell planning and resource allocation scheme called the proposed is presented for improving channel capacity and for maintaining a proper QoS (Quality of Service) over the downlink OFDMA (Orthogonal Frequency Division Multiple Access) system. Through an optimal combination of sectorization and frequency overlay, the proposed scheme accomplishes an improvement in both channel capacity and outage probability. In the simulation, the proposed scheme outperforms 3-sectorization in terms of throughput and outage probability.

  • PDF

The study on the LBS for WiBro repeater (휴대인터넷 중계기를 위한 LBS 적용 방안에 관한 연구)

  • Ahn Jun-Bae;Ryoo Kyoo-Tae
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.53-56
    • /
    • 2006
  • WiBro service provider have made an effort to provide the subscriber's location and have deployed LBS system using cell-ID method. Cell-ID method has a location error problem if repeater is used on the other cell places at the same time. We introduce and analysis LMU(Location Measurement Unit) on the repeater fer location detection of subscriber which is serviced via the repeater. In this paper we propose the method using LMU on the repeater to avoid these location errors and to provide more exact location to the subscriber. we can conclude that the location error can be more exact at the building which uses repeater. It represents in which level the subscriber is serviced at the building.

  • PDF

Power Allocation Framework for OFDMA-based Decode-and-Forward Cellular Relay Networks

  • Farazmand, Yalda;Alfa, Attahiru S.
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.559-567
    • /
    • 2014
  • In this paper, a framework for power allocation of downlink transmissions in orthogonal frequency division multiple access-based decode-and-forward cellular relay networks is investigated. We consider a system with a single base station communicating with multiple users assisted by multiple relays. The relays have limited power which must be divided among the users they support in order to maximize the data rate of the whole network. Advanced power allocation schemes are crucial for such networks. The optimal relay power allocation which maximizes the data rate is proposed as an upper bound, by finding the optimal power requirement for each user based on knapsack problem formulation. Then by considering the fairness, a new relay power allocation scheme, called weighted-based scheme, is proposed. Finally, an efficient power reallocation scheme is proposed to efficiently utilize the power and improve the data rate of the network. Simulation results demonstrate that the proposed power allocation schemes can significantly improve the data rate of the network compared to the traditional scheme.

Improved Resource Allocation Scheme in LTE Femtocell Systems based on Fractional Frequency Reuse

  • Lee, Insun;Hwang, Jaeho;Jang, Sungjeen;Kim, Jaemoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2153-2169
    • /
    • 2012
  • Femtocells provide high quality indoor communications with low transmit power. However, when femtocells are applied in cellular systems, a co-channel interference problem between macrocells and femtocells occurs because femtocells use the same spectrum as do the macrocells. To solve the co-channel interference problem, a previous study suggested a resource allocation scheme in LTE cellular systems using FFR. However, this conventional resource allocation scheme still has interference problems between macrocells and femtocells near the boundary of the sub-areas. In this paper, we define an optimization problem for resource allocation to femtocells and propose a femtocell resource allocation scheme to solve the optimization problem and the interference problems of the conventional scheme. The evaluation of the proposed scheme is conducted by System Level Simulation while varying the simulation environments. The simulation results show that the proposed scheme is superior to the conventional scheme and that it improves the overall performance of cellular systems.

Service Block Based Resource Allocation Scheme for Macrocell-Femtocell Networks

  • Lee, Jong-Chan;Lee, Moon-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.6
    • /
    • pp.29-35
    • /
    • 2015
  • The heterogeneous LTE (Long Term Evolution)-Advanced networks comprising a macrocell and femtocells can provide an efficient solution not only to extend macrocell coverage but also to deal with packet traffics increasing explosively within macrocells. An efficient resource management scheme is necessary to maintain the QoS (Quality of Service) of mobile multimedia services because the LTE-Advanced system should support not only voice but also mobile applications such as data, image and video. This paper proposes a resource management scheme to guarantee QoS continuity of multimedia services and to maximize the resource utilization in OFDMA (Orthogonal Frequency Division Multiple Access) based LTE-Advanced systems. This scheme divides the resources into several service blocks and allocates those resources based on the competition between macrocell and femtocell. Simulation results show that it provides better performances than the conventional one in respect of handover failure rate and blocking rate.

Simplified approach for symbol error rate analysis of SC-FDMA scheme over Rayleigh fading channel

  • Trivedi, Vinay Kumar;Sinha, Madhusudan Kumar;Kumar, Preetam
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.537-545
    • /
    • 2018
  • In this paper, we present a comprehensive analytical study of the symbol error rate (SER) of single-carrier frequency-division multiple access (SC-FDMA) with zero-forcing frequency domain equalization (ZF-FDE) over a Rayleigh fading channel. SC-FDMA is considered as a potential waveform candidate for fifth-generation (5G) radio access networks (RANs). First, the $N_C$ fold convolution of the noise distribution of an orthogonal frequency-division multiplexing (OFDM) system is computed for each value of the signal-to-noise ratio (SNR) in order to determine the noise distribution of the SC-FDMA system. $N_C$ is the number of subcarriers assigned to a user or the size of the discrete Fourier transform (DFT) precoding. Here, we present a simple alternative method of calculating the SER by simplifying the $N_C$ fold convolution using time and amplitude scaling properties. The effects of the $N_C$ fold convolution and SNR over the computation of the SER of the SC-FDMA system has been separated out. As a result, the proposed approach only requires the computation of the $N_C$ fold convolution once, and it is used for different values of SNR to calculate the SER of SC-FDMA systems.

Interference Aware Fractional Frequency Reuse using Dynamic User Classification in Ultra-Dense HetNets

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Small-cells in heterogeneous networks are one of the important technologies to increase the coverage and capacity in 5G cellular networks. However, due to the randomly arranged small-cells, co-tier and cross-tier interference increase, deteriorating the system performance of the network. In order to manage the interference, some channel management methods use fractional frequency reuse(FFR) that divides the cell coverage into the inner region(IR) and outer region(OR) based on the distance from the macro base station(MBS). However, since it is impossible to properly measure the distance in the method with FFR, we propose a new interference aware FFR(IA-FFR) method to enhance the system performance. That is, the proposed IA-FFR method divides the MUEs and SBSs into the IR and OR groups based on the signal to interference plus noise ratio(SINR) of macro user equipments(MUEs) and received signals strength of small-cell base stations(SBSs) from the MBS, respectively, and then dynamically assigns subchannels to MUEs and small-cell user equipments. As a result, the proposed IA-FFR method outperforms other methods in terms of the system capacity and outage probability.