References
- C.-X. Wang et al., "Cellular Architecture and Key Technologies for 5G Wireless Communication Networks," IEEE Commun. Mag., vol. 52, no. 2, Feb. 2014, pp. 122-130. https://doi.org/10.1109/MCOM.2014.6736752
- E.Z. Tragos et al., "Spectrum Assignment in Cognitive Radio Networks: A Comprehensive Survey," IEEE Commun. Surveys Tutorials, vol. 15, no. 3, Jan. 2013, pp. 1108-1135. https://doi.org/10.1109/SURV.2012.121112.00047
- J. Oh and W. Choi, "A Hybrid Cognitive Radio System: A Combination of Underlay and Overlay Approaches," IEEE Veh. Technol. Conf., Ottawa, Canada, Sept. 6-9, 2010, pp. 1-5.
- M. Ge and S. Wang, "Fast Optimal Resource Allocation is Possible for Multiuser OFDM-Based Cognitive Radio Networks with Heterogeneous Services," IEEE Trans. Wireless Commun., vol. 11, no. 4, Apr. 2012, pp. 1500-1509. https://doi.org/10.1109/TWC.2012.021512.111233
- G. Bansal, M.J. Hossain, and V.K. Bhargava, "Adaptive Power Loading for OFDM-Based Cognitive Radio Systems with Statistical Interference Constraint," IEEE Trans. Wireless Commun., vol. 10, no. 9, Sept. 2011, pp. 2786-2791. https://doi.org/10.1109/TWC.2011.072011.100397
- T.N. Duy and L.N. Tho, "Distributed Resource Allocation for Cognitive Radio Networks with Spectrum Sharing Constrains," IEEE Trans. Veh. Technol., vol. 60, no. 7, Sept. 2011, pp. 3436-3449. https://doi.org/10.1109/TVT.2011.2157845
- P. Wang et al., "Power Allocation in OFDM-Based Cognitive Radio Systems," IEEE Global Telecommun. Conf., Washington, DC, USA, Nov. 26-30, 2007, pp. 4061-4065.
- M.G. Khoshkholgh, K. Navaie, and H. Yanikomeroglu, "On the Impact of the Primary Network Activity on the Achievable Capacity of Spectrum Sharing over Fading Channels," IEEE Trans. Wireless Commun., vol. 8, no. 4, Apr. 2009, pp. 2100-2111. https://doi.org/10.1109/TWC.2009.080562
- G. Bansal, O. Duval, and F. Gagnon, "Joint Overlay and Underlay Power Allocation Scheme for OFDM-Based Cognitive Radio Systems," IEEE Veh. Technol. Conf., Taipei, Taiwan, May 16-19, 2010, pp. 1-5.
- G. Bansal et al., "Subcarrier and Power Allocation for OFDMABased Cognitive Radio Systems with Joint Overlay and Underlay Spectrum Access Mechanism," IEEE Trans. Veh. Technol., vol. 62, no. 3, Mar. 2013, pp. 1111-1122. https://doi.org/10.1109/TVT.2012.2227856
- V. Chakravarthy et al., "A Novel Hybrid Overlay/Underlay Cognitive Radio Waveform in Frequency Selective Fading Channels," Int. Conf. Cognitive Radio Oriented Wireless Netw. Commun., Hannover, Germany, June 22-24, 2009, pp. 1-6.
- D. Feng et al., "A Survey of Energy-Efficient Wireless Communications," IEEE Commun. Surveys Tutorials, vol. 15, no. 1, Feb. 2013, pp. 167-178. https://doi.org/10.1109/SURV.2012.020212.00049
- S. Kim, B.G. Lee, and D. Park, "Energy-Per-Bit Minimized Radio Resource Allocation in Heterogeneous Networks," IEEE Trans. Wireless Commun., vol. 13, no. 4, Apr. 2014, pp. 1862-1873. https://doi.org/10.1109/TWC.2014.022114.130443
- J. Mao et al., "Energy Efficiency Optimization for OFDM-Based Cognitive Radio Systems: A Water-Filling Factor Aided Search Method," IEEE Trans. Wireless Commun., vol. 12, no. 5, May 2013, pp. 2366-2375. https://doi.org/10.1109/TWC.2013.013013.121013
- Y. Wang et al., "Optimal Energy-Efficient Power Allocation for OFDM-Based Cognitive Radio Networks," IEEE Commun. Lett., vol. 16, no. 9, Sept. 2012, pp. 1420-1423. https://doi.org/10.1109/LCOMM.2012.070512.120662
- M. Ge and S. Wang, "Energy-Efficient Power Allocation for Cooperative Relay Cognitive Radio Networks," IEEE Wireless Commun. Netw. Conf., Shanghai, China, Apr. 7-10, 2013, pp. 691-696.
- W.J. Shi and S. Wang, "Energy-Efficient Resource Allocation in Cognitive Radio Systems," IEEE Wireless Commun. Netw. Conf., Shanghai, China, Apr. 7-10, 2013, pp. 4618-4623.
- S. Wang, M. Ge, and W. Zhao, "Energy-Efficient Resource Allocation for OFDM-Based Cognitive Radio Networks," IEEE Trans. Commun., vol. 61, no. 8, Aug. 2013, pp. 3181-3191. https://doi.org/10.1109/TCOMM.2013.061913.120878
- X. Cong, L. Lu, and G.Y. Li, "Energy-Efficient Spectrum Access in Cognitive Radios," IEEE J. Sel. Areas Commun., vol. 32, no. 3, Mar. 2014, pp. 550-562. https://doi.org/10.1109/JSAC.2014.1403005
- S. Akin and M.C. Gursoy, "On the Throughput and Energy Efficiency of Cognitive MIMO Transmissions," IEEE Trans. Veh. Technol., vol. 62, no. 7, Mar. 2013, pp. 3245-3260. https://doi.org/10.1109/TVT.2013.2254142
- W. Zhong and J. Wang, "Energy Efficient Spectrum Sharing Strategy Selection for Cognitive MIMO Interference Channels," IEEE Trans. Signal Process., vol. 61, no. 14, July 2013, pp. 3705-3717. https://doi.org/10.1109/TSP.2013.2259162
- W. Dinkelbach, "On Nonlinear Fractional Programming," Manag. Sci., vol. 13, no. 7, Mar. 1967, pp. 492-498. https://doi.org/10.1287/mnsc.13.7.492
- S. Boyd and L. Vandenberghe, "Interior-Point Methods," in Convex Optimization, London, UK: Cambridge University Press, 2004, pp. 562-622.
- G. Bansal, M.J. Hossain, and V.K. Bhargava, "Optimal and Suboptimal Power Allocation Schemes for OFDM-Based Cognitive Radio Systems," IEEE Trans. Wireless Commun., vol. 7, no. 11, Nov. 2008, pp. 4710-4718. https://doi.org/10.1109/T-WC.2008.07091
- T. Weiss et al., "Mutual Interference in OFDM-Based Spectrum Pooling Systems," IEEE Veh. Technol. Conf., vol. 4, May 17-19, 2004, pp. 1873-1877.
- S. Boyd, L. Xiao, and A. Mutapcic, Subgradient Methods, Stanford University, Oct. 1, 2003. Accessed June 18, 2014. https://web.stanford.edu/class/ee392o/subgrad_method.pdf
Cited by
- Coexisting with the dynamic PU, the effect of PU‐returns on a secondary network vol.30, pp.15, 2017, https://doi.org/10.1002/dac.3316