• Title/Summary/Keyword: OFDMA(orthogonal frequency division multiple access)

Search Result 141, Processing Time 0.027 seconds

Design and Experiments Analysis of MIMO Communication System for Ground Unmanned Systems (지상 무인체계용 다중입출력 통신 시스템 설계 및 성능시험 분석)

  • You, Jisang;Choi, Joonsung;Kang, Hongku;Baek, Incheol;Kim, Dojong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.643-653
    • /
    • 2014
  • High-capacity video, control and situation awareness data should be transmitted efficiently to control robots properly in the ground unmanned system, which requires the technology maximizing the communication range and the data transmission throughput. This technology is connected to the OFDMA(Orthogonal Frequency Division Multiple Access)-MIMO(Multiple Input Multiple Output) transmission technology under the limited bandwidth and transmission power. In this paper, we design MIMO communication system for ground unmanned systems, and investigate the data reception performance experimentally, comparing with SISO(Single Input Single Output) system. Experiment results show that the data reception performance of MIMO is significantly improved compared to that of SISO, e.g. 4dB gain of sensitivity and 5dB of SNR at the value MPR = 1, for the mobile stations with $2{\times}2$ STBC diversity.

Traffic Asymmetry Balancing in OFDMA-TDD Cellular Networks

  • Foutekova, Ellina;Sinanovic, Sinan;Haas, Harald
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • This paper proposes a novel approach to interference avoidance via inter-cell relaying in cellular OFDMA-TDD (orthogonal frequency division multiple access - time division duplex) systems. The proposed scheme, termed asymmetry balancing, is targeted towards next-generation cellular wireless systems which are envisaged to have ad hoc and multi-hop capabilities. Asymmetry balancing resolves the detrimental base station (BS)-to-BS interference problem inherent to TDD networks by synchronizing the TDD switching points (SPs) across cells. In order to maintain the flexibility of TDD in serving the asymmetry demands of individual cells, inter-cell relaying is employed. Mobile stations (MSs) in a cell which has a shortage of uplink (UL) resources and spare downlink (DL) resources use free DL resources to off-load UL traffic to cooperating MSs in a neighboring cell using ad hoc communication. In an analogous fashion DL traffic can be balanced. The purpose of this paper is to introduce the asymmetry balancing concept by considering a seven-cell cluster and a single overloaded cell in the center. A mathematical model is developed to quantify the envisaged gains in using asymmetry balancing and is verified via Monte Carlo simulations. It is demonstrated that asymmetry balancing offers great flexibility in UL-DL resource allocation. In addition, results show that a spectral efficiency improvement of more than 100% can be obtained with respect to a case where the TDD SPs are adapted to the cell-specific demands.

Efficient Resource Allocation to Support QoS in a Fixed Relay Based Cellular System (고정 릴레이 기반 셀룰러 시스템에서 QoS를 보장하기 위한 효율적인 자원 할당)

  • Kim, Geun-Bae;Shin, Hee-Young;Park, Sang-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1128-1135
    • /
    • 2010
  • The relay based cellular system has been introduced to provide the service to satisfy the user requirement. The main reasons of using relay station are to expand a service coverage and to increase a system throughput with satisfying the service requirement level. This paper proposes a new resource allocation algorithm which supports the users' throughput fairness and service coverage in the Fixed Relay Based Cellular system with OFDMA. The performance of proposed algorithm is compared with the performances of proportional fairness(PF) algorithm. The simulation result shows that the proposed algorithm increases the number of active users in the service coverage while paying small amount of throughput loss.

Energy-Efficient Power Allocation for Cognitive Radio Networks with Joint Overlay and Underlay Spectrum Access Mechanism

  • Zuo, Jiakuo;Zhao, Li;Bao, Yongqiang;Zou, Cairong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.471-479
    • /
    • 2015
  • Traditional designs of cognitive radio (CR) focus on maximizing system throughput. In this paper, we study the joint overlay and underlay power allocation problem for orthogonal frequency-division multiple access-based CR. Instead of maximizing system throughput, we aim to maximize system energy efficiency (EE), measured by a "bit per Joule" metric, while maintaining the minimal rate requirement of a given CR system, under the total power constraint of a secondary user and interference constraints of primary users. The formulated energy-efficient power allocation (EEPA) problem is nonconvex; to make it solvable, we first transform the original problem into a convex optimization problem via fractional programming, and then the Lagrange dual decomposition method is used to solve the equivalent convex optimization problem. Finally, an optimal EEPA allocation scheme is proposed. Numerical results show that the proposed method can achieve better EE performance.

Multi-stage and Variable-length Peak Windowing Techniques for PAPR Reduction of OFDMA Downlink Systems (OFDMA 하향링크 시스템에서의 PAPR 저감을 위한 다단계 및 가변길이 첨두 윈도윙 기법들)

  • Lee, Sung-Eun;Min, Hyun-Kee;Bang, Keuk-Joon;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • This paper proposes two peak-windowing algorithms for peak-to-average power reduction(PAPR) of orthogonal frequency division multiple access(OFDMA) downlink systems. The Proposed algorithms mitigate the effect of excessive suppression due to successive peaks or relatively high peaks of the signal. First, multi-stage peak windowing algorithm is proposed, which exploits multiple threshold of target PAPR in order to step down the peaks gradually. Secondary, variable-length peak windowing algorithm is proposed, which adapts the window length with respect to the existence of successive peaks within a half of window length. Therefore, the proposed method reduces the distortion of signal amplitude caused by window overlapping. The proposed algorithms outperform the conventional peak windowing with the aid of window-length adaptation or sequential peak power reduction. Simulation results show the efficiency of the proposed algorithms over OFDMA downlink systems, especially WiBro systems.

Resource Allocation in Full-Duplex OFDMA Networks: Approaches for Full and Limited CSIs

  • Nam, Changwon;Joo, Changhee;Yoon, Sung-Guk;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.913-925
    • /
    • 2016
  • In-band wireless full-duplex is a promising technology that enables a wireless node to transmit and receive at the same time on the same frequency band. Due to the complexity of self-interference cancellation techniques, only base stations (BSs) are expected to be full-duplex capable while user terminals remain as legacy half-duplex nodes in the near future. In this case, two different nodes share a single subchannel, one for uplink and the other for downlink, which causes inter-node interference between them. In this paper, we investigate the joint problem of subchannel assignment and power allocation in a single-cell full-duplex orthogonal frequency division multiple access (OFDMA) network considering the inter-node interference. Specifically, we consider two different scenarios: i) The BS knows full channel state information (CSI), and ii) the BS obtains limited CSI through channel feedbacks from nodes. In the full CSI scenario, we design sequential resource allocation algorithms which assign subchannels first to uplink nodes and then to downlink nodes or vice versa. In the limited CSI scenario, we identify the overhead for channel measurement and feedback in full-duplex networks. Then we propose a novel resource allocation scheme where downlink nodes estimate inter-node interference with low complexity. Through simulation, we evaluate our approaches for full and limited CSIs under various scenarios and identify full-duplex gains in various practical scenarios.

A Signal Detection Technique for OFDMA-based Wireless Mesh Networks with Different Time Delays (서로 다른 지연 시간을 갖는 OFDMA 기반의 Wireless Mesh Networks를 위한 신호 검출 기법)

  • Park, Chang-Hwan;Yoo, Hyun-Il;Kim, Yeong-Jun;Kwon, Dong-Seung;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.495-505
    • /
    • 2010
  • In this paper, the effect of Near-Far Problem (NFP) among distributed nodes in OFDMA-based Wireless Mesh Networks (WMNs) is analyzed by investigating statistical characteristics of Time Difference of Arrival (TDoA) and Desired-to-Undesired power Ratio (DUR). In order to overcome the effects of Inter-Symbol Interference (ISI), Inter-Carrier Interference (ICI), and Inter Link Interference (ILI), caused by TDoA in WMNs, we derive effective SINR for each subcarrier, and then, propose the optimal starting point of FFT window which can minimize BER for each subcarrier. In addition, we propose a subcarrier-based Zero Forcing - 2 Dimensional Ordered Successive Interference Cancellation (ZF-2DOSIC) technique for signal detection in WMNs with TDoA. It is verified by simulation that the effective SINR and uncoded BER performances of the proposed signal detection technique for OFDMA-based WMNs are significantly improved, compared with those of conventional technique.

A Resource Management Technique for OFDM-based Digital Duplex Systems (OFDM 기반의 디지털 이중화 시스템을 위한 자원 관리 기법)

  • Park, Chang-Hwan;Kim, Moo-Chul;Ko, Yo-Han;Park, Kyung-Won;Jeon, Won-Gi;Paik, Jong-Ho;Lee, Seok-Pil;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1131-1137
    • /
    • 2009
  • In this paper, a resource management technique for digital duplexing (DD) systems using orthogonal frequency division multiple access (OFDMA) is proposed. The proposed technique can reduce the dynamic range of the signal received at the subscriber station (SS) and minimize the effects of inter-symbol interference (ISI) and inter-carrier interference (ICI) due to the time difference of arrival (TDoA) without using a cyclic suffix. It is shown by computer simulation that the proposed technique can reduce the number of bits for an analog-to-digital converter (ADC) and increase the signal-to-interference and noise ratio (SINR) significantly.

Joint Uplink and Downlink Resource Allocation in Data and Energy Integrated Communication Networks

  • Yu, Qin;Lv, Kesi;Hu, Jie;Yang, Kun;Hong, Xuemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3012-3028
    • /
    • 2017
  • In this paper, we propose a joint power control strategy for both the uplink and downlink transmission by considering the energy requirements of the user equipments' uplink data transmissions in data and energy integrated communication networks (DEINs). In DEINs, the base station (BS) adopts the power splitting (PS) aided simultaneous wireless information and power transfer (SWIPT) technique in the downlink (DL) transmissions, while the user equipments (UEs) carry out their own uplink (UL) transmissions by exploiting the energy harvested during the BS's DL transmissions. In our DEIN model, there are M UEs served by the BS in order to fulfil both of their DL and UL transmissions. The orthogonal frequency division multiple access (OFDMA) technique is adopted for supporting the simultaneous transmissions of multiple UEs. Furthermore, a transmission frame is divided into N time slots in the medium access control (MAC) layer. The mathematical model is established for maximizing the sum-throughput of the UEs' DL transmissions and for ensuring their fairness during a single transmission frame T, respectively. In order to achieve these goals, in each transmission frame T, we optimally allocate the BS's power for each subcarrier and the PS factor for each UE during a specific time slot. The original optimisation problems are transformed into convex forms, which can be perfectly solved by convex optimisation theories. Our numerical results compare the optimal results by conceiving the objective of maximising the sum-throughput and those by conceiving the objective of maximising the fair-throughput. Furthermore, our numerical results also reveal the inherent tradeoff between the DL and the UL transmissions.

A Fair Radio Resource Allocation Algorithm for Uplink of FBMC Based CR Systems

  • Jamal, Hosseinali;Ghorashi, Seyed Ali;Sadough, Seyed Mohammad-Sajad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1479-1495
    • /
    • 2012
  • Spectrum scarcity seems to be the most challenging issue to be solved in new wireless telecommunication services. It is shown that spectrum unavailability is mainly due to spectrum inefficient utilization and inappropriate physical layer execution rather than spectrum shortage. Daily increasing demand for new wireless services with higher data rate and QoS level makes the upgrade of the physical layer modulation techniques inevitable. Orthogonal Frequency Division Multiple Access (OFDMA) which utilizes multicarrier modulation to provide higher data rates with the capability of flexible resource allocation, although has widely been used in current wireless systems and standards, seems not to be the best candidate for cognitive radio systems. Filter Bank based Multi-Carrier (FBMC) is an evolutionary scheme with some advantages over the widely-used OFDM multicarrier technique. In this paper, we focus on the total throughput improvement of a cognitive radio network using FBMC modulation. Along with this modulation scheme, we propose a novel uplink radio resource allocation algorithm in which fairness issue is also considered. Moreover, the average throughput of the proposed FBMC based cognitive radio is compared to a conventional OFDM system in order to illustrate the efficiency of using FBMC in future cognitive radio systems. Simulation results show that in comparison with the state of the art two algorithms (namely, Shaat and Wang) our proposed algorithm achieves higher throughputs and a better fairness for cognitive radio applications.