• Title/Summary/Keyword: O2 plasmas

Search Result 97, Processing Time 0.036 seconds

Silicon trench etching using inductively coupled Cl2/O2 and Cl2/N2 plasmas

  • Kim, Hyeon-Soo;Lee, Young-Jun;Young, Yeom-Geun
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.122-132
    • /
    • 1998
  • Characteristics of inductively coupled Cl2/O2 and Cl2/N2 plasmas and their effects on the formation of submicron deep trench etching of single crystal silicon have been investigated using Langmuir probe, quadrupole mass spectrometer (QMS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), Also, when silicon is etched with oxygen added chlorine plasmas, etch products recombined with oxygen such as SiClxOy emerged and Si-O bondings were found on the etched silicon surface. However, when nitrogen is added to chlorine, no etch products recombined with nitrogen nor Si-N bondings were found on the etched silicon surface. When deep silicon trenches were teached, the characteristics of Cl2/O2 and Cl2/N2 plasmas changed the thickness of the sidewall residue (passivation layer) and the etch profile. Vertical deep submicron trench profiles having the aspect ratio higher than 5 could be obtained by controlling the thickness of the residue formed on the trench sidewall using Cl2(O2/N2) plasmas.

  • PDF

CHARACTERISITCS OF CHLORINE IND DUCTIVELY COUPLED PLASMAS AND THEIR SILICON ETCH PROPERTIES

  • Lee, Young-Jun;Kim, Hyeon-Soo;Yeom, Geun-Young;Oho, Kyung-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.816-823
    • /
    • 1996
  • Chlorine containing high density plasmas are widely used to etch various materials in the microelectronic device fabrication. In this study, the characteristics of inductively coupled $Cl_2(O_2/N_2$) plasmas and their effects on the formation of silicon etching have been investigated using a Langmuir probe, quadrupole mass spectrometry(QMS), X-ray photoelectron spectroscopy(XPS), and Scanning Electron Microscopy(SEM). The addition of oxygen for chlorine plasmas reduced ion current densities and chlorine radical densities compared to the nitrogen addition by the recombination of oxygen with chlorine. Also, when silicon is etched in $Cl_2/O_2$ plasmas, etch products recombined with oxygen such as $SiCl_xO_y$ emerged. However, when nitrogen is added to chlorine, etch products recombined with nitrogen or Si-N bondings on the etched silicon surface were not found. All the silicon etch characteristics were dependent on the plasma conditions such as ion density, radical density, etc. As a result sub micron vertical silicon trench etch profiles could be effectively formed using optimized etch conditions for $Cl_2/O_2\; and \;Cl_2/N_2$ gas combinations.

  • PDF

Dry Etching of Ru Electrodes using O2/Cl2 Inductively Coupled Plasmas

  • Kim, Hyoun Woo
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.238-242
    • /
    • 2003
  • The characteristics of Ru etching using $O_2/Cl_2$ plasmas were investigated by employing inductively coupled plasma (ICP) etcher. The changes of Ru etch rate, Ru to $SiO_2$ etch selectivity and Ru electrode etching slope with the gas flow ratio, bias power, total gas flow rate, and source power were scrutinized. A high etching slope (${\sim}86^{\circ}$) and a smooth surface after etching was attained using $O_2/Cl_2$ inductively coupled plasma.

Spetroscopic Diagnostics of Reactive Plasma in a Facing Target Sputtering Unit (대향타겟트 스파터기에서 반응성 플라즈마의 스펙트로스코프 검진)

  • Na, Jong-Gab;Lee, Taek-Dong;Park, Soon-Ja
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.337-342
    • /
    • 1992
  • Spectroscopic diagnostics on reactive plasmas was carried out in a facing target sputtering unit with BaO +12Fe composite targets and 50% $O_2+$ Ar sputter gas. Spectra of rective plasmas were composed of peaks which were assigned to be Ba, B$a^+$, Fe, FeO, F$e^+$, Ar, $Ar^+$, O, $O^+$. As detecting positions in plasmas were far away from targets, the relative peak intensities of the ions and neutral species were decreased, but the relative intensities of the former decreased faster than those of the latter.

  • PDF

Dry Etching Characteristics of ZnO Thin Films for the Optoelectronic Device by Using Inductively Coupled Plasma

  • Joo, Young-Hee;Woo, Jong-Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.6-9
    • /
    • 2012
  • In this study, we carried out an investigation of the etching characteristics (etch rate, selectivity to $SiO_2$) of ZnO thin films in $N_2/Cl_2$/Ar inductivity coupled plasma. A maximum etch rate and selectivity of 108.8 nm/min and, 3.21, respectively, was obtained for ZnO thin film at a $N_2/Cl_2$/Ar gas mixing ratio of 15:16:4 sccm. The plasmas were characterized by optical emission spectroscopy. The x-ray photoelectron spectroscopy analysis showed the efficient destruction of oxide bonds by ion bombardment. An accumulation of low volatile reaction products on the etched surface was also shown. Based on this data, an ion-assisted chemical reaction is proposed as the main etch mechanism for plasmas containing $Cl_2$.

Plasma Treatments to Forming Metal Contacts in Graphene FET

  • Choi, Min-Sup;Lee, Seung-Hwan;Lim, Yeong-Dae;Yoo, Won-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.121-121
    • /
    • 2011
  • Graphene formed by chemical vapor deposition was exposed to the various plasmas of Ar, O2, N2, and H2 to examine its effects on the bonding properties of graphene to metal. Upon the Ar plasma exposure of patterned graphene, the subsequently deposited metal electrodes remained intact, enabling successful fabrication of field effect transistor (FET) arrays. The effects of enhancing adhesion between graphene and metals were more evident from O2 plasmas than Ar, N2, and H2 plasmas, suggesting that chemical reaction of O radicals induces hydrophilic property of graphene more effectively than chemical reaction of H and N radicals and physical bombardment of Ar ions. From the electrical measurements (drain current vs. gate voltage) of field effect transistors before and after Ar plasma exposure, it was confirmed that the plasma treatment is very effective in controlling bonding properties of graphene to metals accurately without requiring buffer layers.

  • PDF

Selective etch of silicon nitride, and silicon dioxide upon $O_2$ dilution of $CF_4$ plasmas ($CF_4$$O_2$혼합가스를 이용한 산화막과 질화막의 선택적 식각에 관한 연구)

  • 김주민;원태영
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.90-94
    • /
    • 1995
  • Reactive Ion Etching(RIE) of Si$_{3}$N$_{4}$ in a CF$_{4}$/O$_{2}$ gas plasma exhibits such good anisotropic etching properties that it is widely employed in current VLSI technology. However, the RIE process can cause serious damage to the silicon surface under the Si$_{3}$N$_{4}$ layer. When an atmospheric pressure chemical vapor deposited(APCVD) SiO$_{2}$ layer is used as a etch-stop material for Si$_{3}$N$_{4}$, it seems inevitable to get a good etch selectivity of Si$_{3}$N$_{4}$ with respect to SiO$_{2}$. Therefore, we have undertaken thorough study of the dependence of the etch rate of Si$_{3}$N$_{4}$ plasmas on $O_{2}$ dilution, RF power, and chamber pressure. The etch selectivity of Si$_{3}$N$_{4}$ with respect to SiO$_{2}$ has been obtained its value of 2.13 at the RF power of 150 W and the pressure of 110 mTorr in CF$_{4}$ gas plasma diluted with 25% $O_{2}$ by flow rate.

  • PDF