• 제목/요약/키워드: O-plasma treatment

검색결과 607건 처리시간 0.04초

리튬이차전지에서 대기압 수소플라즈마 처리된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성분석 (Characterization of Atmospheric H2-Plasma-Treated LiNi1/3Co1/3Mn1/3O2 as Cathode Materials in Lithium Rechargeable Batteries)

  • 선호정;이재호;정현영;석동찬;정용호;박경세;심중표
    • 한국수소및신에너지학회논문집
    • /
    • 제24권2호
    • /
    • pp.160-171
    • /
    • 2013
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powder for cathode materials in lithium rechargeable batteries was treated by atmospheric plasma containing hydrogen to investigate the relationship between charge/discharge performance and physical/chemical changes of materials. Hydrogen plasma at atmosphere pressure was irradiated on the surface of active materials, and the change for their crystal structure, surface morphology, and chemical composition were observed by XRD, SEM-EDS and titration method, respectively. The crystal structure and surface morphology of $H_2$ plasma-treated powders were not changed but their chemical compositions were slightly varied. For charge/discharge test, $H_2$ plasma affected initial capacity and rate capability of active materials but continuous cycling was not subject to plasma treatment. Therefore, it was observed that $H_2$ plasma treatment affected the surface of materials and caused the change of chemical composition.

플라즈마 처리된 폴리스티렌 막을 통한 순수한 CO2 와 N2 기체의 선택·투과 특성 (Selectivity and Permeability Characteristics of Pure CO2 and N2 Gases through Plasma Treated Polystyrene Membrane)

  • 황의동;신희용;곽현;배성열
    • Korean Chemical Engineering Research
    • /
    • 제44권6호
    • /
    • pp.588-596
    • /
    • 2006
  • 폴리스티렌 막(polystyrene membrane, PS)의 표면을 Ar, $O_2$ 플라즈마로 처리하고, 처리 전후의 변화를 관찰하였고, $CO_2$, $N_2$의 투과도와 $N_2$에 대한 $CO_2$의 선택도는 연속흐름 기체 투과 분석장치(GPA)를 이용하여 측정하였다. Ar플라즈마 처리의 경우 O/C비율이 0에서 0.179로 증가하고, 표면 거칠기가 $15.86{\AA}$에서 $71.64{\AA}$로 증가함으로써 접촉각은 처리전의 $89.16^{\circ}$에서 $18.1^{\circ}$로 감소하였다. 따라서 플라즈마 처리는 막표면을 높은 친수성을 갖도록 만들었다. $CO_2$의 투과도와 선택도에 대한 Ar플라즈마 처리최적조건은 60 W, 2 min, $70^{\circ}C$이며, 투과도와 선택도는 각각 $2.1{\times}10^{-12}[m^3(STP){\cdot}m/m^2{\cdot}sec{\cdot}atm]$와 4.51이었다. $O_2$플라즈마 처리의 경우에, 접촉각은 O/C비율(0.189)과 표면 거칠기($57.10{\AA}$)의 증가에 의해 $13.56^{\circ}$로 감소하였다. 최적의 처리조건은 90 W-2 min-$70^{\circ}C$이며, 값 $7.1{\times}10^{-12}[m^3(STP){\cdot}m/m^2{\cdot}sec{\cdot}atm]$와 값 11.5이었다. 플라즈마 처리 후 막 표면의 변화는 표면에서의 교차결합과 식각효과의 경쟁적인 관계에 의해 결정된다. 결국 플라즈마 처리된 막의 투과도와 선택도가 플라즈마 기체, 처리시간, 출력세기등과 같은 플라즈마 상태를 제어함으로써 향상되었음을 확인할 수 있었다.

폴리머 기판의 표면개질을 통한 ZnO:Al 투명전도막의 전기적 특성 개선 (Electrical property improvement of ZnO:Al transparent conducting oxide thin film as surface treatment of polymer substrate)

  • 팽성환;정기영;박병욱;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1352-1353
    • /
    • 2008
  • In this study, aluminium - doped zinc oxide (ZnO:Al) transparent conducting film was deposited on PET(polyethylen terephthalate) substrate by r.f. magnetron sputtering method. PET substrate was surface-treated in an atmospheric pressure DBD(dielectric barrier discharge) plasma to increase deposition rate and to improve electrical propesties. Morphological changes by DBD plasma were obsered using contact angle measurement. The contact angle of water on PET was reduced from 62$^{\circ}$ to 42$^{\circ}$ by DBD plasma surface treatment. The plasma treatment also increased deposition rate and electrical propesties. The electrical resistivity as low as $4.97{\times}10^{-3}[{\Omega}-cm]$ and the deposition rate of 234[${\AA}$-m/min] were obtained in ZnO:Al film with surface treatment time of 5min, and 20min., respectively.

  • PDF

The Effect of Ion-Beam Treatment on TiO2 Coatings Deposited on Polycarbonate Substrates

  • Park, Jung-Min;Lee, Jai-Yeoul;Lee, Hee-Young;Park, Jae-Bum
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권6호
    • /
    • pp.266-270
    • /
    • 2010
  • The effect of an Ar plasma treatment on polycarbonate substrates was investigated using $TiO_2$ coatings produced by reactive ion-beam assisted sputtering. The typical pressure used during sputtering was about $10^{-4}$ Torr. After the Ar plasma treatment, the contact angle of a water droplet was reduced from $88^{\circ}$ to $52^{\circ}$ and then further decreased to $12^{\circ}$ with the addition of oxygen into the chamber. The surface of the polycarbonate substrate hanged from hydrophobic to hydrophilic with these treatments and revealed its changing nano-scale roughness. The $TiO_2$ films on the treated surface showed various colors and periodic ordering dependant on the film thickness due to optical interference.

Effects of Oxygen Plasma Treatment on the Wettability of Polypropylene Fabrics

  • Kwon, Young Ah
    • 한국의류산업학회지
    • /
    • 제16권3호
    • /
    • pp.456-461
    • /
    • 2014
  • The objective of this study is to give PP(polypropylene) fabric a good affinity for water. Oxygen plasma was treated to PP fabrics in a commercial glow discharge reactor with different RF power, discharge pressure, and reaction time. The PP fiber surfaces were characterized by the measurement of contact angle and ESCA. A JEOL scanning electron microscope was used to observe the surface morphology of fibers. The spontaneous water uptake amount of PP fabrics was determined by the demand wettability test. To determine the effect of aging on the surface properties of $O_2$ plasma treated PP, all the above measurements of the samples were carried out after 1, 7, 30, 60, and 150 days. The results are as follows. The PP fiber surfaces treated by $O_2$ plasma treatment have a chemical composition that consisted of various oxygen containing polar groups. Consequently, the contact angles of the treated PP fibers decreased, which improved the water uptake rate of PP fabrics. Surface roughness of the treated PP affected the fabric wettabiity as well. Wettability of the treated PP decreased and leveled off with aging. The $O_2$ plasma treatment is a simple and effective method to increase the water uptake rate of PP fabrics.

Characterization of Plasma with Heating Treatment of ITO on the Efficiency of Polymer Solar Cells

  • Kim, Jung-Woo;Kim, Nam-Hun;Kim, Hyoung-Sub;Jung, Dong-Geun;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.301-301
    • /
    • 2010
  • In order to enhance the efficiency of the organic solar cells, the effects of plasma surface treatment with using $CF_4$ and $O_2$ gas on the anode ITO were studied. The polymer solar cell devices were fabricated on ITO glasses an active layer of P3HT (poly-3-hexylthiophene) and PCBM ([6,6]-phenyl C61-butyric acid methyl ester) mixture, without anode buffer layer, such as PEDOT:PSS layer. The metallic electrode was formed by thermally evaporated Al. Before the coating of organic layers, ITO surface was exposed to plasma made of $CF_4$ and $O_2$ gas, with/without heat treatment. In order to identify the effect the surface treatment, the current density and voltage characteristics were measured by solar simulator and the chemical composition of plasma treated ITO surface was analyzed by using X-ray photoelectron spectroscopy(XPS). In addition, the work function of the plasma treated ITO surface was measured by using ultraviolet photoelectron spectroscopy(UPS). The effects of plasma surface treatment can be attributed to the removal organic contaminants of the ITO surface, to the improvement of contact between ITO and buffer layer, and to the increase of work function of the ITO.

  • PDF

Unexpected Chemical and Thermal Stability of Surface Oxynitride of Anatase TiO2 Nanocrystals Prepared in the Afterglow of N2 Plasma

  • Jeon, Byungwook;Kim, Ansoon;Kim, Yu Kwon
    • Applied Science and Convergence Technology
    • /
    • 제26권4호
    • /
    • pp.62-65
    • /
    • 2017
  • Passivation of surface defects by the formation of chemically inert structure at the surface of $TiO_2$ nanocrystals can be potentially useful in enhancing their photocatalytic activity. In this regard, we have studied the surface chemical states of $TiO_2$ surfaces prepared by a treatment in the afterglow of $N_2$ microwave plasma using X-ray photoemission spectroscopy (XPS). We find that nitrogen is incorporated into the surface after the treatment up to a few atomic percent. Interestingly, the surface oxynitride layer is found to be chemically stable when it's in contact with water at room temperature (RT). The surface nitrogen species were also found to be thermally stable upon annealing up to $150^{\circ}C$ in the atmospheric pressure. Thus, we conclude that the treatment of oxide materials such as $TiO_2$ in the afterglow of $N_2$ plasma can be effective way to passivate the surface with nitrogen species.

Ar 플라즈마 처리에 따른 Al-doped ZnO 박막특성변화 (The effect of Ar plasma treatment on Al-doped ZnO)

  • 진선문;안철우;조남인;남형진
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.43-46
    • /
    • 2011
  • In this study, we investigated the effects of the post Ar plasma treatment at different RF powers for various durations on electrical, structural, and optical properties of relatively thin Al-doped zinc oxide films. The sheet resistance was observed to decrease rapidly for the first 5min, beyond which the resistance apparently saturated. As the RF power increased, the grain size and the interplanar distance of (002) planes also increased. The observed decrease in sheet resistance was stated to be a consequence of Al and/or Zn interstitials as well as grain growth. It was also found that Ar plasma treatment increased the transmittance of Al-doped zinc oxide films in most of the visible light range below the blue light.

Plasma Engineering for Nano-Materials

  • Kim, Seong-In;Shin, Myoung-Sun;Son, Byung-Koo;Song, Seok-Kyun;Choi, Sun-Yong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.79-79
    • /
    • 2012
  • A high temperature and a low temperature plasma process technologies were developed and demonstrated for synthesis, hybrid formation, surface treatment and CVD engineering of nano powder. RF thermal plasma is used for synthesis of spherical nano particles in a diameter ranged from 10 nm to 100 nm. A variety of nano particules such as Si, Ni, has been synthesized. The diameter of the nano-particles can be controlled by RF plasma power, pressure, gas flow rate and raw material feed rate. A modified RF thermal plasma also produces nano hybrid materials with graphene. Hemispherical nano-materials such as Ag, Ni, Si, SiO2, Al2O3, size ranged from 30 to 100 nm, has been grown on graphene nanoplatelet surface. The coverage ranged from 0.1 to 0.7 has been achieved uniformly over the graphene surface. Low temperature AC plasma is developed for surface modification of nano-powder. In order to have a three dimensional and lengthy plasma treatment, a spiral type of reactor has been developed. A similar plasma reactor has been modfied for nano plasma CVD process. The reactor can be heated with halogen lamp.

  • PDF

$O_2$ plasma 표면 처리 공정에 의한 SOI nano-wire Bio-FET 소자의 전기적 특성 열화 (Degradation of electrical characteristics in SOI nano-wire Bio-FET devices)

  • 오세만;조원주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.356-357
    • /
    • 2008
  • The effects of $O_2$ plasma ashing process for surface treatment of nano-wire Bio-FET were investigated. In order to evaluate the plasma damage introduced by $O_2$ plasma ashing, a back-gate biasing method was developed and the electrical characteristics as a function of $O_2$ plasma power were measured. Serious degradations of electrical characteristics of nano-wire Bio-FET were observed when the plasma power is higher than 50 W. For curing the plasma damages, a forming gas anneal (2 %, $H_2/N_2$) was carried out at $400^{\circ}C$. As a result, the electrical characteristics of nano-wire Bio-FET were considerably recovered.

  • PDF