• Title/Summary/Keyword: O/W/O Emulsion

Search Result 299, Processing Time 0.029 seconds

Preparation and Stabilization of an O/W Emulsion Using Liquid Crystalline Phases (액정상을 이용한 O/W형 에멀젼의 제조 및 제형 안정화에 관한 연구)

  • An, Bong-Jeun;Lee, Jin-Tae;Lee, In-Chol;Kwak, Jae-Hoon;Park, Jung-Mi;Park, Chan-Ik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.31-36
    • /
    • 2004
  • Liquid crystalline phases were formed from acylglutamate; polyglyceryl-10 myristate and glycerine mixture and they were used as a base material for preparing an O/W emulsion. When an oil phase is added into the liquid crystalline phases, it was inserted into the dispersed liquid crystal droplets rather than stayed outside the liquid crystals, which can be known by the fact that the size of liquid crystal droplets increases with the increasing oil phase content. Along with the increase in the droplet size, the complex modulus increases from 100 to 350 pascals and the loss angle decreases from 60 to 24 degrees, from which it can be known that the increase in the internal phase volume results in the increase in the elastic property of oil in liquid crystalline-phases (O/LC). When the water phase was lastly added into the O/LC phase, the emulsification occurred to form a O/W emulsion and the averaged particle size of the O/W emulsion changes from 22.5nm to 538nm with the addition of water phase. The results from the droplet size measurements and stability tests under accelerated conditions such as high temperature show that the obtained O/W emulsion is very consistent with time.

Effect of PVP on the Physical Stability of O/W Emulsion (O/W 유제의 물리적 안정성에 대한 PVP의 영향)

  • Oh, In-Joon;Lee, Mi-Young;Lee, Jeong-Min;Lee, Yong-Bok;Shin, Sang-Chul;Choi, Bo-Guil;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.287-293
    • /
    • 1997
  • To make a stable o/w emulsion, the effects of egg lecithin as an emulsifier and polyvinylpyrrolidone (PVP) as an auxiliary emulsifier on the physical stability of emulsion were investigated. The oil-in-water emulsion system was manufactured by microfluidizer and evaluated the physical stability. Average particle size and size distribution of emulsion was measured by dynamic light scattering analyzer and interfacial tension was measured. From the interfacial tension tested, critical micelle concentration of the egg lecithin was 0.1 %w/v and optimal concentration for the preparation of emulsion was 1.0 %w/v. The mean particle size was about $0.2\;{\mu}m$ which was suitable for injections. The short-term accelerated stability studies were conducted by centrifugation, freeze-thaw method and shaking of the emulsion samples. The addition of PVP was caused the reduction in the particle size and improved the physical stability of emulsion. These results suggested that a mixed interfacial film comprising the egg lecithin and PVP was formed at the o/w interface and it was effective in preventing phase separation under thermic or mechanical stress. We used antineoplaston A10 (A10) as a model drug which is peptide and amino acid derivative having a action to the living organism against the development of neoplastic growth by a nonimmunological progress. It has a poor solubility in water and there may be a difficulty in formulation of A10. Emulsion formulation study about A10 was performed. Solubility of A10 in emulsion was about five times as high as that in water. From the results of solubility and partition coefficient, almost A10 molecules in o/w emulsion exist in the interface between oil and water.

  • PDF

The Flow Properties and Stability of O/W Emulsion Composed of Various Mixed Nonionic Surfactants(II) The Phase Behavior and Flow Properties of O/W Emulsion According to the Addition of the Long Chain Alcohols (혼합 비이온계면활성제의 조성에 따른 O/W 에멀젼의 유동특성 및 안정성(II) 고급 알코올의 첨가에 따른 O/W 에멀젼의 상거동 및 유동특성)

  • Lee, Ho-Sik;Kim, Jum-Sik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.423-431
    • /
    • 1993
  • Long chain alcohols, the mixtures of 1-hexadecanol/1-octadecanol, were used as cosurfactants for O/W emulsion prepared with glycerol monostearate/POE(100) monostearate mixed nonionic surfactants, and the phase behavior and flow properties of O/W emulsions were observed. The transition temperature of long chain alcohol was varied with the composition of 1-hexadecanol/1-octadecanol and had the lowest value when the mixed ratio of 1-hexadecanol/1-octadecanol was 2/1. The liquid crystalline phase was formed as the addition of long chain alcohol and the secondry droplet, the flocculate of the emulsion particles, was made, and thus the viscosity of the emulsion was increased. When the temperature of emulsion system was under the transition temperature of long chain alcohol, the mobility of hydrocarbon group of long chain alcohol was restricted, and thus gel structure was formed and the viscosity of the the O/W emulsion was increased, but along with the time, the liquid crystalline phase was disappeared and the viscosity of emulsion was decreased. Long chain alcohol/nonionic surfactants/water formed the liquid crystalline phase when the long chain alcohol was added above the saturation point of solution(2 wt% in this experoment), and the secondry droplet didn't formed when the long chain alcohol was added more than a certain amount (10 wt% in this experiment).

  • PDF

Morphology and swelling property of chitosan microapsules and microbeads prepared by W/O emulsion (W/O 에멀젼에 의한 chitosan microcapsule 및 microbead의 morphology와 팽윤성)

  • 하병조;이옥섭
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 1995
  • Chitosan microcapsules and microbeads were prepared by W/O emulsion method, and their morphologies were observed through SEM. The microcapsules have skin layer of 8 Um and 250 Um of mean diameter, The swelling test showed higher s welling ability in protic solvents than in aphotic solvents. After containing moth-yl violet in the microcapsules, the release patterns were investigated. The results sho wed that the addition of Iysozyme in pH 5.1 acetate buffer accelerated the re-lease rate. In case of the microbeads, the mean diameter was about 70 Um. The surface of the microbeads showed porous structures. The swelling ability of the beads revealed two times higher than the one of the microcapsules.

  • PDF

A Study on the Formation of a W/O/W Multiple Emulsion by Polyglyceryl-10 Stearate (Polyglyceryl-10 Stearate를 이용한 W/O/W 다중 에멀젼의 제조에 관한 연구)

  • Yoo, Jung Min;Choi, Se Bum;Kim, Kyung Min;Kim, Seong Ho;Lee, Chung Hee;Lee, Sang Gil;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.237-246
    • /
    • 2014
  • Multiple emulsions, called multiphase emulsions, include water-in-oil-in-water (W/O/W) type and oil-in-water-in-oil (O/W/O) type emulsions. In cosmetic industry, they are used to stabilize active ingredients but the applicability of the multiple emulsions is limited because of low stability and difficulty of manufacturing. In this study, we investigated a two-step emulsification process for a W/O/W type emulsion. We also investigated the change of stability using different emulsifiers and oil polarity. The results suggested that polyglyceryl-10 stearate, as a main emulsifier, played an important role in the stability and the formation of the multiple emulsions.

THE STUDY ON STABLE EMULSION SYSTEM AND SELECTIVE ADDITION OF ACTIVE INGREDIENT IN W/O/W ONE STEP MULTIPLE EMULSION

  • Kim, Se-gie;Park, Hee-nam;Kim, Tae-kyoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.96-104
    • /
    • 1998
  • It was possible to produce W/O/W one step multiple emulsion on the system which satisfied following conditions. 1. 1-5% of hydrophilic liquid surfactant over HLB20 and lipophilic liquid surfactant which has HLB 3∼5 2. Non wax copolymers as oil thickener 3. More than 0.5% of carbomer as aqueous thickener 4. The manufacturing process which neutralize the dispersed carbomer (2.0% in water), after emulsifying. For the selective addition into inner and outer aqueous phase, we melted the glucose in water before emulsifying. Using an Anthrone analysis method, we analyzed the encapsulation yield of glucose in inner water phase. It was possible to raise the water encapsulation yield of the multiple emulsion through the following conditions. 1. Using of anionic hydrophilic surfactant(HLB 40) and lipophilic surfactant (HLB 3∼5) 2. Controlling the ratio of hydrophilic surfactant and lipophilic surfactant 3. Strengthening interface with increase of non wax oil thickener. When the separated adding process of glucose was adopted, approximately 85% of glucose was added selectively within inner aqueous phase.

  • PDF

Development of Water-Resistant O/W Emulsion-Typed Sunscreening Cosmetics through Triblock Polymeric Surfactant-Mediated Re-emulsification Inhibition (삼중블록 고분자 계면활성제의 재유화 억제 기능을 이용한 지속내수성 O/W 에멀젼형 자외선 차단용 화장품 개발)

  • Lee, Ji Hyun;Hong, Sung Yun;Lee, Jin Yong;An, So Youn;Lee, Hyo Jin;Kim, Sung Yong;Lee, Jun Bae;Kim, Jin Woong;Shin, Kyounghee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.199-208
    • /
    • 2019
  • This study reports water-resistant oil-in-water (O/W) emulsion-based sunscreening formulations prepared using a poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) triblock polymeric surfactant. As a result of a variety of outdoor recreational activities such as swimming and hiking, consumer needs for development of advanced water-resistant sunscreen formulations are increasing. Water-resistant sunscreens are mostly based on water-in-oil (W/O) emulsions, because they should not be wiped off by water or sweat. However, the W/O emulsion formulations have a disadvantage in that the feeling of use is oily and difficult to remove. On the other hand, the O/W emulsion formulations are excellent in achieving the better skin feel as well as the easier removal. However, it is difficult to provide the O/W emulsion formulations with the water-repelling performance, since re-emulsification likely occurs upon getting touch with water. To solve this problem, this study proposes a O/W emulsion-based sunscreen formulation, a triblock polymeric surfactant having relatively high interfacial tension HLB value (~ 10). This allows the sunscreen formulations to exhibit the improved water repellence function by preventing their re-emulsification. The sunscreen formation system prepared in this study would be useful for diversification of functional sunscreen products, taking advantages of its excellent emulsion stability, UV protection performance, long lasting water-resistant function and selective cleansing effect with only foam cleanser.

Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index

  • Hong, In Kwon;Kim, Su In;Lee, Seung Bum
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.123-131
    • /
    • 2018
  • Using mixed nonionic surfactants Span/Tween, we investigated the effects of HLB value on the O/W emulsion stability and rheological behaviors. In this study, MS-01 (Span 60 & Tween 60) and MS-02 (Span 80 & Tween 80) was used as mixed nonionic surfactants. We considered required HLB value 10.85 and selected corresponding HLB value range 8-13. The droplet size distributions, droplet morphology, rheological properties, zeta-potential and creaming index of the emulsion samples were obtained to understand the mechanism and interaction of droplets in O/W emulsion. The results indicated that optimal HLB number for O/W emulsions was 10.8 and 10.7, while using MS-01 surfactant and MS-02 surfactant respectively. MS-01 (HLB = 10.8) sample and MS-02 (HLB = 10.7) sample showed smallest droplet size and highest zeta-potential value. Rheological properties are measured to understand rheological behaviors of emulsion samples. All emulsion samples showed no phase separation until 30 days storage time at $25^{\circ}C$.

Rheology of Decamethylceclopentasiloxane (cyclomethicone) W/O Emulsion System

  • Choi, Min-Hyung;Jeong, So-Ra;Nam, Sang-In;Shim, Sang-Eun;Chang, Yoon-Ho
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.943-949
    • /
    • 2009
  • A highly dispersed W/O emulsion of silicone oil (cyclomethicone)/water system was prepared with a nonionic surfactant. The surface and interfacial tension between the oil and water were characterized in terms of the droplet size distribution and viscosity change of the emulsion. When the dispersed phase concentration was relatively high, the viscosity of the emulsion was rapidly increased and the droplet size of the emulsion was decreased. The rheological behavior of the emulsion system showed non-Newtonian and shear thinning phenomena depending upon the content of the dispersed phase. The droplet size of the emulsion was decreased with increasing surfactant content and water concentration. The relative viscosity of the emulsion was better predicted with the Choi-Schowalter model than with the Taylor model. The value of the complex modulus increased with increasing surfactant concentration. The linear viscoelastic region was expanded with a dispersed phase concentration. According to the change in the viscosity, the behavior was classified into three distinct regions: [I] linear viscoelastic, [II] partially viscoelastic, and [III] viscous. The creep/recovery behaviors in each region were characterized.

Effects on Skin Irritation and Turnover Rate by the Control of Skin Permeability of Alpha-hydroxyacids

  • Cheon-Koo Lee;Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.2
    • /
    • pp.132-140
    • /
    • 1996
  • The effect of a novel delivery system, water in oil emulsion containing chitosan hydrogel as a inner phase (W/O-C) was evaluated, and the relationships between the skin permeation, the skin primary irritation and the skin turnover rate of AHAs were discussed. We selected glycolic acid (GA), lactic acid (LA), malic acid (MA), and tartaric acid (TA) as model AHAs. The steady state fluxes of 4 AHAs across the excised hairless mouse skin increased as the molecular weights of the AHAs decreased. (GA>LA>MA>TA). The skin turnover times were shortened in all AHAs, compared with control. The skin permeation and the skin primary irritation of the LA decreased and the skin turnover time increased, as the pH increased. The maximum therapeutic index was obtained with pH 3.8, 0.5 M LA. It was suggested that the skin permeability of LA might be a main factor for prediction of the skin irritation and the skin turnover time. On the other hand, the W/O-C containing pH 3.8, 0.5 M LA indicated a good sustained release property of LA, compared with water in oil emulsion without chitosan hydrogel (W/O) or oil in water emulsion (O/W). The skin permeability and the skin irritation of AHAs from the W/O-C edcreased, compared with W/O or O/W, however the skin turnover time showed almost the same value as W/O or O/W. In conclusion, we suggest that the control of the skin permeation of AHAs would be an important tool for reducing the skin irritation and for maintaining the positive effect of AHAs, and the W/O-C system could be a potential candidate for future cosmetological application of AHAs.

  • PDF