• Title/Summary/Keyword: Nutrient solution Ratio

Search Result 111, Processing Time 0.025 seconds

Comparisons of Ion Balance, Fruit Yield, Water, and Fertilizer Use Efficiencies in Open and Closed Soilless Culture of Paprika (Capsicum annuum L.)

  • Ko, Myat Thaint;Ahn, Tae In;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.423-428
    • /
    • 2013
  • Although closed soilless culture is useful for saving water and fertilizers with minimizing environmental pollution, adequate management of nutrient solutions is still not stabilized in greenhouse cultivation. In order to investigate the problems occurred in closed soilless culture of Paprika (Capsicum annuum L., cv. Fiesta), we compared ion balance, fruit yield, and the water and fertilizer use efficiencies in the closed system with those in the open system. The plants were grown in rockwool culture with a nutrient solution of EC $2.5dS{\cdot}m^{-1}$. After 4 weeks of treatment, individual ratio of $NO{_3}^-$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ to total ion concentrations ($meq{\cdot}L^{-1}$) decreased from the initial value, especially the biggest decrement was observed in $K^+$, and on the other hand, $SO{_4}^{2-}$, $Cl^-$, and $Na^+$ were accumulated in the closed system. Yields after four-time harvests were 19% higher in the open system than in the closed system. Total volume of water used per unit area ($m^2$) in the open system was 20% higher, but the total water use per fruit was not significantly different between the two systems, while t total fertilizer use per fruit was 78% higher in the closed system. Amount of marketable fruits was not significantly different between the two systems. We concluded that the increase in $K^+$ supply and the replenishment of recycled nutrient solution every four weeks were required for preventing the imbalance or depletion of nutrients in the close soilless culture of paprika plants to get more balanced nutrient composition during whole cultivation period.

Effect of the Composition of Nutrient Solution on the Growth and Flowering of Gerbera (양액(養液)의 조성(組成)이 거베라의 생육(生育) 및 개화(開花)에 미치는 영향(影響))

  • Choi, Byeong-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.246-249
    • /
    • 1995
  • This study was conducted to establish the optimal ratio of $NO_3^-$ and $NH_4^+$ for the nutrient culture of Gerbera hybrida Hort. The results were summarized as follows; 1. The growth of 'Volga' was best in 8 : 2($NO_3^-$ : $NH_4^+$) solution, while that of 'Mirage' was in 9 : 1 ratio. 2. The maximum quantity of cut flowers could be harvested in the 8 : 2 solution in 'Volga', whereas in 9: 1 solution in 'Mirage', but the differences between 9 : 1 and 8 : 2 were not significantly great. 3. In 'Volga', the qualities of cut flowers were not different among 10 : 0, 9 : 1 and 8 : 2, while those in 'Mirage' were not different among all treatments. 4. It turned out that the optimum ratio of $NO_3^-$ and $NH_4^+$ for the nutrient culture of gerbera in the farm house was 8 : 2, irrespective of cultivas.

  • PDF

Optimum Strength and NH4+:NO3- Ratio of Nutrient Solution for Romaine Lettuce Cultivated in a Home Hydroponic System (가정용 수경재배기에서 재배한 로메인상추의 생육에 적합한 양액 강도와 NH4+:NO3-의 비율)

  • Kyungdeok Noh;Byoung Ryong Jeong
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.97-105
    • /
    • 2023
  • Concentration of nitrogen, one of the major elements, and ratio of two nitrogen forms (NH4+ and NO3-) in the nutrient solution affect the quality and food safety of fresh vegetable produce. This study was conducted to find an appropriate strength and NH4+:NO3- ratio of a nutrient solution for growth and development of a Romaine lettuce (Lactuca sativa L. var. longiflora) 'Caesar Green', a representative leafy vegetable, grown in a home hydroponic system. In the first experiment, plants were grown using three types of nutrient solution: A commercial nutrient solution (Peters) and two strengths (GNU1 and GNU2) of a multipurpose nutrient solution (GNU solution) developed in a Gyeongsang National University lab. Plants grown with the GNU1 and GNU2 had greater shoot length, leaf length and width, and biomass yield than Peters. On the other hand, the root hairs of plants grown with Peters were short and dark in color. Tissue NH4+ content in the Peters was higher than that of the GNU1 and GNU2. The higher contents of NH4+ in this solution may have caused ammonium toxicity. In the second experiment, eight treatment solutions, combining GNU1 and GNU2 solutions with four ratios of NO3- :NH4+ named as 1, 2, 3 and 4 were used. Both experiments showed more growth in the GNU2 group, which had a relatively low ionic strength of the nutrient solution. The growth of Romaine lettuce showed the greatest fresh weight along with low tissue NO3- content in the GNU2-2. This was more advantageous in terms of food safety in that it suppressed the accumulation of surplus NO3- in tissues due to the low ionic trength of the GNU2 subgroup. In addition, this is preferable in that it can reduce the absolute amount of the input of inorganic nutrients to the nutrient solution.

Effects of Nutrient Solution Concentration and Substrate on the Growth of Common Thyme(Thymus vulgaris L.) (배지의 종류와 배양액농도가 백리향(Thymus vulgaris L.)의 생육에 미치는 영향)

  • 김예희;이문정;박권우
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.90-98
    • /
    • 1999
  • This study was conducted to select proper substrate and nutrient solution concentration for favorable growth and quality in common thyme (Thymus vulgaris L.). The growth of common thyme was better in deep flow culture (DFT) than in other substrate cultures. As the nutrient solution concentration rose, the ratio of dry matter increased, while the fresh weight and the number of lateral shoots decreased. The contents of total chlorophyll and vitamin C were higher in DFT than others. Ca, K, P were showed high contents in cocopeat, but Mg content was the highest at half-fold concentration in DFT. Common thyme showed low content of nitrate in DFT compared with that in other substrate culture. DFT was the most effective system for pronoting growth and quality of common thyme. The optimal concentration of nutrient solution in common thyme was half-fold(EC=1.2mS/cm) of herbs nutrient solution by European Vegetable R&D Center.

  • PDF

Determination of Dairy Cow Food Intake using Simulated Annealing (시뮬레이티드 어닐링을 이용한 젖소의 급이량 산정)

  • 허은영;김동원;한병성;김용준;이수영
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.433-450
    • /
    • 2002
  • The daily food intake for dairy cows has to be effectively controlled to breed a sound group of cows as well as to enhance the productivity of the cows. But, feed stuffs are fed in the common bulk for a group of cows in most cases despite that the individual food intake has to be varied. To obtain the feed for each cow, both the nutrient requirements and the nutrient composition of fred have to be provided in advance, which are based on the status of cows such as weigh marginal weight amount of milk, fat concentration in milk, growth and milking stages, and rough feed ratio, etc. Then, the mixed ration fur diet would be computed by the nutrient requirements constraints. However, when TMR (Total Mixed Ration) is conventionally supplied for a group of cows, it is almost impossible to get an optimal feed mixed ration meeting the nutrient requirements of each individual cow since the constraints are usually conflicting and over-constrained although they are linear. Hence, addressed in this paper is a simulated annealing (SA) technique to find the food intake for dairy cows, considering the characteristics of individual or grouped cows. Appropriate parameters fur the successful working of SA are determined through preliminary experiments. The parameters include initial temperature, epoch length. cooling scheduling, and stopping criteria. In addition, a neighborhood solution generation method for the effective improvement of solutions is presented. Experimental results show that the final solution for the mixture of feed fits the rough feed ratio and some other nutrient requirements such as rough fiber, acid detergent fiber, and neutral detergent fiber, with 100 percent, while fulfilling net energy for lactating, metabolic energy, total digestible nutrients, crude protein, and undegraded intake protein within average five percent.

Effects Of $\textrm{NO}_3^\;-$-N : $\textrm{NH}_4^\;+$-N Ratio in Nutrient Solution on the Growth and Quality of Welsh Onion(Allium fistulosum L.) (양액내 $\textrm{NO}_3^\;-$-N과 $\textrm{NH}_4^\;+$-N비가 잎파의 생육과 품질에 미치는 영향)

  • 박권우;이정훈;장매희
    • Journal of Bio-Environment Control
    • /
    • v.3 no.2
    • /
    • pp.99-105
    • /
    • 1994
  • The objective of this study was conducted for elucidation of effects of the NO$_3$$^{[-10]}$ -N. NH$_4$$^{+}$-N ratio in the nutrient solution on the growth and quality of welsh onion(Allium fistulosum L.). The pH of nutrient solution increased in NO$_3$$^{[-10]}$ -N : NH$_4$$^{+}$-N ratio of 9 : 1 treatment, decreased in 1 : 1, 1 : 3 treatment, but was stable in 3 : 1 treatment during cultivation. The apparent growth of welsh onion was best in the treatment of 9 : 1(NO$_3$$^{[-10]}$ -N : NH$_4$$^{+}$-N ratio), however the treatment of 1 : 3 resulted in poor growth. The NO$_3$$^{[-10]}$ -N content of the plants increased in proportion to that content of nutrient solution. Pyruvic acid content of welsh onion was highest at 9 : 1, 3 : 1 treatment, and lowest at 1 : 3 treatment.tment.

  • PDF

Growth and Microsomal ATPase Activity of Lettuce(Lactuca sativa. L.) Cultured in the $KNO_3-Added$ Nutrient Solution (($KNO_3$를 첨가한 양액에서 상추의 생육 및 마이크로솜 ATPase 활성 변화)

  • Lee, Gyeong-Ja;Kang, Bo-Goo;Kim, Hyun-Ju;Min, Kyeong-Beom;Kim, Young-Kee
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.28-33
    • /
    • 2001
  • Lettuces were grown hydroponically in three different nutrient solutions, normal and 30 or 50 mM $KNO_3-added$ nutrient solutions, and the electrical conductivities of the nutrient solutions were 1.0, 4.5, and 6.5 dS/m, respectively. Lettuces grown in the $KNO_3-added$ nutrient solutions showed a decrease in the germination ratio and the lower indices of growth, such as plant height, stem diameter, leaf length, and leaf width. Microsomes were prepared from the roots of lettuce and characteristics of microsomal ATPases were investigated. The activities of microsomal ATPases grown in the 30 mM and 50 mM $KNO_3-added$ nutrient solutions were higher than that grown in the normal nutrient solution. The highest activities of microsomal ATPases were observed at pH 7.0 in all culture conditions. The activities of microsomal ATPases were increased in a reaction buffer solution containing high concentration of $K^+$, whereas they were decreased in a reaction buffer containing $Na^+$. The stimulating effect of $K^+$ in the reaction buffer was greater on the microsomal ATPases of lettuces grown in the $KNO_3-added$ nutrient solutions than that grown in the normal nutrient solution. These results imply that the activities of microsomal ATPases in the root tissue are increased as increasing the $KNO_3$ concentration in the hydroponical nutrient solution.

  • PDF

Analysis of Changes in Ion Concentration with Time and Drainage Ratio under EC-based Nutrient Control in Closed-loop Soilless Culture for Sweet Pepper Plants (Capsicum annum L. 'Boogie') (EC 기준 순환식 파프리카 수경재배에서 시간 경과 및 배액율에 따른 이온농도 변화 분석)

  • Ahn, Tae-In;Shin, Jong-Wha;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.298-304
    • /
    • 2010
  • Nutrient uptake by plants and drainage ratio in culture beds can affect ion balance and concentrations of nutrient solutions in electrical conductivity (EC)-based closed-loop soilless culture. This study was conducted to analyze ion concentration changes with time and drainage ratio under EC-based nutrient control in closed-loop soilless culture for sweet pepper plants (Capsicum annum L. 'Boogie'). At first experiment, ion concentrations of the nutrient solution were periodically analysed while collected drainage was being reused by mixing with fresh nutrient solution at a dilution rate of EC $2.2\;dSm^{-1}$. Changes in ion concentrations of $K^+$, $Ca^{2+}$, $Mg^{2+}$, $NO_3^-$, $SO_4^{2-}$, and $PO_4^{3-}$ were 1.13, 5.35, 0.92, 0.9, 1.10, $0.19\;meq{\cdot}L^{-1}$, respectively. Ion balance such as $K^+$ : $Ca^{2+}$ and $SO_4^{2-}$ : $NO_3^-$ were mainly affected during the recirculation of nutrient solution. At second experiment, ion concentrations and EC of drainage were compared before and after replenishment under different four drainage ratios of 7%, 16%, 39%, and 51%. Ion ratios of the recirculated nutrient solutions such as $K^+$ : $Ca^{2+}$ for cation and $SO_4^{2-}$ : $NO_3^-$ for anion were investigated. ECs of drainage decreased with increase of drainage ratio and each ion concentration showed the same trends as EC did. Ion balances in drainage with drainage ratio were a little different from each other, but each ratio could be corrected by replenishment process. The ion balance at 7% drainage ratio was closest to initial ratio and followed by 16%, 51%, and 39% in the order. Ion balance such as $K^+$ : $Ca^{2+}$ and $NO_3^-$ : $PO_4^{3-}$ were mainly affected the correction process.

Relationship between Muskmelon Net and Fruit Quality Using Three Dimensional Image Recognition (3차원 화상인식을 이용한 머스크멜론 네트와 과실품질과의 관계)

  • 장홍기;정순주
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.167-173
    • /
    • 1996
  • Laser distance meter and x-y robot employed in the extraction of three dimensional image recognition of muskmelon net and recognized the characteristics of that. All data measured transmitted to the PC/AT in the computer room and programmed with Visual Basic(Microsoft). Alteration of the concentration and application time of nutrient solution modified the net height and width of hydroponically grown muskmelon. Net height and width which are the characteristics of muskmelon depended on the concentration of nutrient solution used. Decreasing with the concentration of nutrient solution lowered the occupying ratio of net and also observed the tendency of widening of muskmelon net.

  • PDF

Effects of $\textrm{NO}_3$-N:$\textrm{NH}_4$-N Ratio and Elevated $\textrm{CO}_2$ on Growth and Quality of Lactuca sativa L. in Nutrient Film Technique (NFT재배에서 $\textrm{CO}_2$ 시용과 배양액의 $\textrm{NO}_3$:$\textrm{NH}_4$비율이 결구상추의 생육 및 품질에 미치는 영향)

  • 원선이;조영렬;이용범
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.120-130
    • /
    • 1996
  • Crisphead lettuce(Lactuca sativa L.) was grown in NFT to investigate the effects of NO$_3$-N and NH$_4$-N ratio in nutrient solution and elevated $CO_2$ treatment in the crisphead lettuce growth. This experiment has been conducted under three different ratios of NO$_3$-N:NH$_4$-N(100:0, 75:25, 50:50) with two $CO_2$ concentration (control, 1500ppm ). The results are as follows; 1. In the case of not controlling pH and EC in nutrient solution, pH was gradually increased in NO$_3$-N:NH$_4$-N=100:0 treatment but rapidly decreased in the nutrient solution 2. Daily changes of NO$_3$-N and NH$_4$-N were observed without controlling the nutrient solution. In the treatments of NO$_3$-N:NH$_4$-N ratios were 75:25 and 50:50, NO$_3$-N absorption rates were 27.7% and 26.1%, while NH$_4$-N absorption rates were 87.9% and 71.2%, respectively. 3. There was little differences in total nitrogen of leaves. However phosphorus, potassium, calcium and magnesium contents were highly shown in the treatment of $CO_2$ 1500ppm and 100:0 ratio of NO$_3$-N:NH$_4$-N. 4. Higher $CO_2$ assimilation rate was shown in plants grown under $CO_2$ 1500ppm and 100:0 ratio of NO$_3$-N:NH$_4$-N. It dropped significantly with the increase of NH$_4$- N rates in nutrient solution. 5. Fresh weight, leaf number, root length and root weight of crisphead lettuce were far better in the treatment of $CO_2$ 1500ppm and 100:0 ratio of NO$_3$-N:NH$_4$-N. Growth differences by $CO_2$ elevation were not shown in other NO$_3$-N:NH$_4$-N treatments. 6. The highest nitrate contents of leaves were shown in NO$_3$-N single treatment but shown the lowest vitamin C contents. Nitrate contents of leaves were decreased by $CO_2$ but the effect was slight treatment.

  • PDF