DOI QR코드

DOI QR Code

Optimum Strength and NH4+:NO3- Ratio of Nutrient Solution for Romaine Lettuce Cultivated in a Home Hydroponic System

가정용 수경재배기에서 재배한 로메인상추의 생육에 적합한 양액 강도와 NH4+:NO3-의 비율

  • Kyungdeok Noh (Department of Horticulture, Division of Applied Life Science (BK21 four Program), Graduate School of Gyeongsang National University) ;
  • Byoung Ryong Jeong (Department of Horticulture, Division of Applied Life Science (BK21 four Program), Graduate School of Gyeongsang National University)
  • 노경덕 (경상국립대학교 대학원 응용생명과학부(BK21 Four)) ;
  • 정병룡 (경상국립대학교 대학원 응용생명과학부(BK21 Four))
  • Received : 2022.12.30
  • Accepted : 2023.03.05
  • Published : 2023.04.30

Abstract

Concentration of nitrogen, one of the major elements, and ratio of two nitrogen forms (NH4+ and NO3-) in the nutrient solution affect the quality and food safety of fresh vegetable produce. This study was conducted to find an appropriate strength and NH4+:NO3- ratio of a nutrient solution for growth and development of a Romaine lettuce (Lactuca sativa L. var. longiflora) 'Caesar Green', a representative leafy vegetable, grown in a home hydroponic system. In the first experiment, plants were grown using three types of nutrient solution: A commercial nutrient solution (Peters) and two strengths (GNU1 and GNU2) of a multipurpose nutrient solution (GNU solution) developed in a Gyeongsang National University lab. Plants grown with the GNU1 and GNU2 had greater shoot length, leaf length and width, and biomass yield than Peters. On the other hand, the root hairs of plants grown with Peters were short and dark in color. Tissue NH4+ content in the Peters was higher than that of the GNU1 and GNU2. The higher contents of NH4+ in this solution may have caused ammonium toxicity. In the second experiment, eight treatment solutions, combining GNU1 and GNU2 solutions with four ratios of NO3- :NH4+ named as 1, 2, 3 and 4 were used. Both experiments showed more growth in the GNU2 group, which had a relatively low ionic strength of the nutrient solution. The growth of Romaine lettuce showed the greatest fresh weight along with low tissue NO3- content in the GNU2-2. This was more advantageous in terms of food safety in that it suppressed the accumulation of surplus NO3- in tissues due to the low ionic trength of the GNU2 subgroup. In addition, this is preferable in that it can reduce the absolute amount of the input of inorganic nutrients to the nutrient solution.

본 연구는 대표적인 엽채류인 로메인(Lactuca sativa L. var. longiflora) 'Caesar Green'의 수경재배에 적절한 양액 강도와 NH4+ :NO3-의 비율을 찾기 위해 수행하였다. 첫 실험에서는 한 상업용 양액(Peters, 20-20-20)과 실험실에서 제조한 다목적 양액(GNU solution)을 2수준의 강도(GNU1, 100%; GNU2, 70%)로 조절하여 사용하였다. 발아속도는 GNU1보다 GNU2와 Peters에서 더 빨랐다. GNU1과 GNU2로 재배한 로메인이 Peters에서 재배된 것보다 초장, 엽장, 엽폭, 생체중이 더 컸다. 반면 Peters에서 재배한 로메인의 뿌리는 색이 어둡고 뿌리털이 짧았다. 조직 내 NH4+ 함량은 Peters에서 GNU1 과 GNU2보다 유의하게 높았다. 두번째 실험에서는 GNU1과 GNU2 양액을 질소 형태 비율(NH4+ :NO3-;100:0, 83.3:16.7, 66.7:33.3 및 50:50)에 따라 총 8가지로 조성하였다. NH4+ :NO3- 비율을 50:50으로 처리했을 때 조직 내 NH4+ 함량이 가장 높았고 독성 증상이 나타났다. 결론적으로 순환형 저면관수 수경재배 시스템에서 로메인에는 GNU2-2가 적합한 양액이었다. 두 실험 모두 비교적 이온 강도가 낮은 양액인 GNU2 그룹에서 더 많은 생장을 보였다. GNU2-2 양액에서 가장 높은 생체중을 보이면서도 NO3-의 조직 내 함량이 낮았다. 이는 GNU2 하위 그룹이 이온 강도가 낮기 때문에 조직 내 잉여 NO3-의 축적을 억제한다는 점에서 식품안전성 측면에서 더 유리했다. 또한 이것은 양액에의 무기양분 투입 절대량을 줄일 수 있다는 점에서 바람직하다.

Keywords

Acknowledgement

본 연구는 LG전자(과제번호. C2020040728)의 지원으로 수행되었으며, 노경덕은 BK21 Four의 지원을 받았음.

References

  1. Alexander P., A. Arneth, R. Henry, J. Maire, S. Rabin, and M.D.A. Rounsevell 2022, High energy and fertilizer prices are more damaging than food export curtailment from Ukraine and Russia for food prices, health and the environment. Nature Food 4:84-95. doi:10.1038/s43016-022-00659-9
  2. Chamandoost S., M. Fateh Moradi, and M.-J. Hosseini 2016, A review of nitrate and nitrite toxicity in foods. J Hum Environ Health Promot 1:80-86. doi:10.29252/JHEHP.1.2.80
  3. Chen B.M., Z.H. Wang, S.X. Li, G.X. Wang, H.X. Song, and X.N. Wang 2004, Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci 167:635-643. doi:10.1016/j.plantsci.2004.05.015
  4. Chung J.B., S.J. Jin, and H.J. Cho 2005, Low water potential in saline soils enhances nitrate accumulation of lettuce. Commun Soil Sci Plant Anal 36:1773-1785. doi:10.1081/CSS-200062443
  5. Clarkson D.T., and J.B. Hanson 1980, The mineral nutrition of higher plants. Annu Rev Plant Physiol 31:239-298. doi:10.1146/annurev.pp.31.060180.001323
  6. Conesa E., D. Ninirola, M.J. Vicente, J. Ochoa, S. Banon, and J.A. Fernandez 2009, The influence of nitrate/ammonium ratio on yield quality and nitrate, oxalate and vitamin C content of baby leaf spinach and bladder campion plants grown in a floating system. Acta Hortic 843:269-274. doi:10.17660/ActaHortic.2009.843.35
  7. Esteban R., I. Ariz, C. Cruz, and J.F. Moran 2016, Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci 248:92-101. doi:10.1016/j.plantsci.2016.04.008
  8. Hassen T.B., and H.E. Bilali 2022, Impacts of the Russia-Ukraine war on global food security: towards more sustainable and resilient food systems? Foods 11:2301. doi:10.3390/foods11152301
  9. Houdusse F., A.M. Zamarreno, M. Garnica, and J. Garcia-Mina 2005, The importance of nitrate in ameliorating the effects of ammonium and urea nutrition on plant development: the relationships with free polyamines and plant proline contents. Funct Plant Biol 32:1057-1067. doi:10.1071/FP05042
  10. Huett D.O. 1994, Growth, nutrient uptake and tipburn severity of hydroponic lettuce in response to electrical conductivity and K:Ca ratio in solution. Aust J Agric Res 45:251-267. doi:10.1071/AR9940251
  11. Jeong B.R., and C.W. Lee 1990, Effect of NH4+, NO3-, and Cl- ions on ion uptake and solution pH in hydroponic culture of ageratum and salvia. HortScience 25:1171a-1171. doi:10.21273/HORTSCI.25.9.1171a
  12. Jung W.S., and Y.D. Kim 2019, A study on the water quality variation characteristics of nakdong river considering the meteorological effects. Proc Korea Water Resour Assoc Conf 2019:422. (in Korean)
  13. Kanter D.R., O. Chodos, O. Nordland, M. Rutigliano, and W. Winiwarter 2020, Gaps and opportunities in nitrogen pollution policies around the world. Nat Sustain 3:956-963. doi:10.1038/s41893-020-0577-7
  14. Kappel N., I.F. Boros, F.S. Ravelombola, and L. Sipos 2021, EC sensitivity of hydroponically-grown lettuce (Lactuca sativa L.) types in terms of nitrate accumulation. Agriculture 11:315. doi:10.3390/agriculture11040315
  15. Maynard D.N., A.V. Barker, P.L. Minotti, and N.H. Peck 1976, Nitrate accumulation in vegetables. Adv Agron 28:71-118. doi:10.1016/S0065-2113(08)60553-2
  16. Mazur L.J. 2003, Pediatric environmental health. Curr Probl Pediatr Adolesc Health Care 33:6-25. https://doi.org/10.1067/mps.2003.1
  17. Mengel K. 1979, Influence of exogenous factors on the quality and chemical composition of vegetables. Acta Hortic 93: 133-152. doi:10.17660/ActaHortic.1979.93.15
  18. Miller A.J., and M.D. Cramer 2005, Root nitrogen acquisition and assimilation. Plant Soil 274:1-36. doi:10.1007/s11104-004-0965-1
  19. Noh K., and B.R. Jeong 2021, Optimizing temperature and photoperiod in a home cultivation system to program normal, delayed, and hastened growth and development modes for leafy oak-leaf and romaine lettuces. Sustainability 13:10879. doi:10.3390/su131910879
  20. Noh K., and B.R. Jeong 2022, Silicon supplementation alleviates adverse effects of ammonium on ssamchoo grown in home cultivation system. Plants 11:2882. doi:10.3390/plants11212882
  21. Onanuga A.O., P. Jiang, and S. Adl 2012, Effect of phytohormones, phosphorus and potassium on cotton varieties (Gossypium hirsutum) root growth and root activity grown in hydroponic nutrient solution. J Agric Sci 4:93-110. doi:10.5539/jas.v4n3p93
  22. Samarakoon U.C., P.A. Weerasinghe, and W.A.P. Weerakkody 2006, Effect of electrical conductivity [EC] of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture. Trop Agric Res 18:13-21.
  23. Santamaria P. 2006, Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric 86: 10-17. doi:10.1002/jsfa.2351
  24. Shang H.Q., and G.M. Shen 2018, Effect of ammonium/nitrate ratio on pak choi (Brassica chinensis L.) photosynthetic capacity and biomass accumulation under low light intensity and water deficit. Photosynthetica 56:1039-1046. doi:10.1007/s11099-018-0815-7
  25. Song J., J. Yang, and B.R. Jeong 2021, Growth, quality, and nitrogen assimilation in response to high ammonium or nitrate supply in cabbage (Brassica campestris L.) and lettuce (Lactuca sativa L.). Agronomy 11:2556. doi:10.3390/agronomy11122556
  26. Song J., J. Yang, and B.R. Jeong 2022, Silicon mitigates ammonium toxicity in cabbage (Brassica campestris L. ssp. pekinensis) 'Ssamchu'. Front Sustain Food Syst 6:922666. doi:10.3389/fsufs.2022.922666
  27. Tekile A., I. Kim, and J. Kim 2015, Mini-review on river eutrophication and bottom improvement techniques, with special emphasis on the Nakdong River. J Environ Sci 30:113-121. doi:10.1016/j.jes.2014.10.014
  28. Tudi M., H.D. Ruan, L. Wang, J. Lyu, R. Sadler, D. Connell, C. Chu, and D.T. Phung 2021, Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health 18:1112. doi:10.3390/ijerph18031112
  29. Wang M., J. Xiao, H. Wei, and B.R. Jeong 2020, Supplementary light source affects growth and development of carnation 'Dreambyul'cuttings. Agronomy 10:1217. doi:10.3390/agronomy10081217
  30. Wolff I.A., and A.E. Wasserman 1972, Nitrates, nitrites, and nitrosamines: Extensive research is needed to establish how great a food hazard these nitrogenous substances present. Science 177:15-19. doi:10.1126/science.177.4043.15
  31. Zhang J., J. Lv, M.M. Dawuda, J. Xie, J. Yu, J. Li, X. Zhang, C. Tang, C. Wang, and Y. Gan 2019, Appropriate ammoniumnitrate ratio improves nutrient accumulation and fruit quality in pepper (Capsicum annuum L.). Agronomy 9:683. doi:10.3390/agronomy9110683