• Title/Summary/Keyword: Nutrient Flux

Search Result 73, Processing Time 0.038 seconds

Inorganic Nutrient Inputs from Precipitation, Throughfall, and Stemflow in Pinus densiflora and Quercus mongolica Stands in an Urban Forest Ecosystem

  • Kim, Kee Dae
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.813-829
    • /
    • 2019
  • We measured the amount of precipitation, stemflow, and throughfall and concentrations of nine major inorganic nutrients ($H^+$, ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$) to investigate the nutrient inputs into soil from precipitation in Pinus densiflora and Quercus mongolica stands from September 2015 to August 2016. The precipitation inputs of $H^+$, ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$ into soil were 0.170, 15.124, 42.227, 19.218, 14.050, 15.887, 22.391, 5.431, and $129.440kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, respectively. The P. densiflora stemflow inputs were 0.008, 0.784, 1.652, 1.044, 0.476, 0.651, 1.509, 0.278, and $9.098kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, and those for Q. mongolica were 0.008, 0.684, 2.429, 2.417, 2.941, 1.398, 2.407, 0.436, and $13.504kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, respectively. The P. densiflora throughfall inputs were 0.042, 21.518, 52.207 27.694, 20.060, 24.049, 37.229, 10.241, and $153.790kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, and those for Q. mongolica were 0.032, 15.068, 42.834, 21.219, 20.294, 20.237, 24.288, 5.647, and $119.134kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, respectively. Of the total throughfall flux (i.e., stemflow + throughfall flux) of the nine ions for the two species, ${SO_4}^{2-}$ had the greatest total throughfall flux and $H^+$ had the lowest. The net throughfall fluxes of the ions for the two species had various correlations with the precedent dry period, rainfall intensity, rainfall amount, and pH of precipitation. The soil pH under the Q. mongolica canopy (4.88) was higher than that under the P. densiflora canopy (4.34). The difference in the soil pH between the two stands was significant (P < 0.01), but the difference in soil pH by the distance from the stems of the two species was not (P > 0.01). This study shows the enrichments of inorganic nutrients by two representative urban forests in temperate regions and the roles of urban forests during rainfall events in a year.

Effects of Light Intensity and Nutrient Solution Strength during Short Day Treatment on the Growth and Nutrient Absorption of Kalanchoe blossfeldiana 'Rako' in Ebb and Flow System and the Accumulation of Nutrients in Growing Medium (단일처리시기의 광도와 양액농도가 Ebb and Flow 재배시스템에서 재배한 칼랑코에(Kalanchoe blossfeldiana 'Rako')의 생육, 양분흡수 및 배지 양분집적에 미치는 영향)

  • Noh, Eun-Hee;Choi, Jong-Myoung;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2011
  • The objective of this study was to investigate the effects of light intensity and electrical conductivity (EC) of nutrient solution during short day treatment in an ebb and flow systems on the growth and nutrient uptake of potted Kalanchoe blossfeldiana 'Rako' and the nutrient accumulation of growing medium. Nutrient concentrations in the growing medium were also analyzed to investigate the accumulation rates of macro-nutrients such as T-N, P, K, Ca, and Mg, respectively. To achieve the objectives, plants were fed with a nutrient solution with 1.2, 1.8, or $2.4dS{\cdot}m^{-1}$ under three daily photosynthetic photon flux (PPF) of 4.26, 5.51, or $9.75mol{\cdot}m^{-2}{\cdot}d^{-1}$. Both light intensity and EC of nutrient solution significantly influenced the crop growth. The elevation of PPFs resulted in the increase of plant growth. For each light condition, plant growth, such as dry and fresh weight and leaf area, was the highest when the electrical conductivity of nutrient solution was controlled to $2.4dS{\cdot}m^{-1}$. However, growth was acceptable in the EC ranges from 1.8 to $2.4dS{\cdot}m^{-1}$. Both light intensity and EC of nutrient solution significantly influenced the uptake of nutrients in the solution tanks and the accumulation of nutrients in the growing medium. As the EC of nutrient solution was elevated, the absorption rates of $NO_3^-$, $PO_4^{-3}$, $K^+$, and $Mg^{2+}$ by crops and accumulation of those in growing medium increased, but the light intensity did not significantly influence the absorption rates. Based on the above results, the regression models were suggested for anticipating the macro-nutrient accumulations in growing medium.

Production Ecology of the Seagrass Zostera marina in Jindong Bay, Korea

  • Lee, Kun-Seop;Park, Jung-Im;Chung, Ik-Kyo;Kang, Dong-Woo;Huh, Sung-Hoi
    • ALGAE
    • /
    • v.19 no.1
    • /
    • pp.39-47
    • /
    • 2004
  • Production dynamics of eelgrass, Zostera marina was examined in Jindong Bay on the south of the Korea peninsula. Eelgrass leaf productivities and environmental factors such as underwater photon flux density, water temperature, and nutrient availabilities in the water column and sediments were monitored from March 2002 to December 2003. While water temperature exhibited a distinct seasonal trend, underwater irradiance and nutrient availabilities exhibited high degree of fluctuation, and did not show a seasonal trend throughout the experimental periods. Eelgrass leaf elongation and production rates showed significant seasonal variations. Leaf productivity was highest in May (30.0 mg dry wt sht$^{-1}$ d$^{-1}$ or 3.7g dry wt m$^{-2}$d$^{-1}$) and lowest in November (3.2 mg dry wt sht$^{-1}$ d$^{-1}$ or 0.12 g dry wt m $^{-2}$ d$^{-1}$). Eelgrass leaf productivities did not show a strong correlation with underwater irradiance or environmental nutrient availabilities. The production rates, however, were positively correlated with water temperature during spring periods, and were correlated negatively at high water temperature exceeded 20℃ during summer months. While relative growth rates were highest in spring and lowest in high water temperature periods, plastochrone interval was longest during summer and shortest during spring. These results imply that seasonal growth dynamics of eelgrass, Z. marina was mainly controlled by water temperature.

Development of Submerged Membrane Bioreactor for Biological Nutrient Removal on Municipal Wastewater and Analyzing the Effect of Chemical Cleaning on Microbial Activity (도시 하수에서의 생물학적 고도처리를 위한 MBR공정 개발 및 화학세정에 의한 미생물 활성도 영향 분석)

  • Park, Jong-Bu;Park, Seung-Kook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.120-124
    • /
    • 2009
  • This study was performed to investigate the application of submerged membrane bioreactor (MBR) system for biological nutrient removal of municipal wastewater. MBR bioreactor consists of four reactors such as anaerobic, stabilization, anoxic and submerged membrane aerobic reactors with two internal recycles. The hydraulic retention time (HRT), sludge retention time (SRT) and flux were 6.2 hr, 34.1 days and $19.6L/m^2/hr$ (LMH), respectively. As a result of operation, the removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.3%, 99.9%, 69.4%, and 74.6%, respectively. There was no significant effect of microbial activity after the maintenance cleaning using 200 mg/L of NaOCl. Membrane filtration for the treatment of municipal wastewater was performed for longer than 9 months without chemical recovery cleaning.

Prediction of Nitrogen Loading from Forest Stands in Eutrophication of Lake (호소 부영양화에 있어서 산림임반으로부터 질소부하 평가를 위한 조사)

  • Chung, Doug-Young;Lee, Young-Han;Lee, Jin-Ho;Park, Mi-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.430-437
    • /
    • 2010
  • The continuous release of nutrient sources into natural water resource can be a continuing problem in eutrophication, as well as severe reductions in water quality. However, any desirable measure is not developed yet even though so many researches and efforts have been done to solve this problem. Forest as one of troublesome nonpoint sources may contributes most to nutrient loading, but the loading of N and P from forest in order to grasp the eutrophication potential of nonpoint sources has not been evaluated. The nutrient sources from the organic litter accumulated on the surface of forest soils can be a critical factor in continuity of eutrophication of a lake. The decomposition rate of litter can be estimated to predict release of N and P from the forest stand. The loss rate of nitrogen is complicated but depends in part upon the physical matrix of the element. Therefore, long-term nutrient budget and flux estimates at stand would be useful tools in calculating potential nutrient fluxes into the watercourses in a sustainable way. The present investigation can give insight to the actual situation of the eutrophication potentials of forest as the practical nonpoint sources.

Pattern of Nutrient Fluxes in Deciduous Forest Ecosystem Imparted by Acidic Deposition (산성강하물 조건하에서 활엽수림 생태계의 양료순환 양상)

  • Chang, Kwan-Soon
    • Korean Journal of Environment and Ecology
    • /
    • v.15 no.3
    • /
    • pp.230-236
    • /
    • 2001
  • The fluxes of wet deposition(WD), throughfall(TF), stemflow(SF) and soil leachates were measured to understand base cation budgets on deciduous ecosystem impacted by acidic deposition in the north-western part of Tomakomai in Hokkaido, Japan. The flux of $H^{+}$ for wet deposition was $0.34kmo1_{c}$ $ha^{2+}$ and the flux of base cation, $K^{+}$ /, Na$^{ + }$, $Ca^{2+}$ and $Mg^{2+}$ far throughfall plus stemflow wart 1.6 kmolc $ha^{-1}$ , 3 times higher level than that for wet deposition. The flux of base cation for canopy leaching(LI) was 0.95 kmolc ha$^{-1}$ , 2.8 times higher level than $H^{+}$ sources in wet deposition. The major mechanism of $^{+}$ consumption closely related to acidic neutralizing capacity of canopy. The ionic flux for soil leachates from Boil reservoir and proton consumption in soil was dependent on soil chemical states and exchangeable Ca in soil had a major factor of H$^{+ }$ consumption. The base cation budgets on deciduous ecosystem showed positive balance fur Na, Ca and Mg, while K was the negative value.

  • PDF

Quality of Potato Plug Seedlings as Affected by Photosynthetic Photon Flux and Electric Conductivity of Nutrient Solution (광합성유효광양자속과 배양액의 전기전도도가 감자 플러그묘의 묘소질에 미치는 영향)

  • 이상헌;김용현;이명규;최유화
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2003.04a
    • /
    • pp.140-145
    • /
    • 2003
  • 폐쇄형 묘생산 시스템을에서 기내 배양된 감자 소식물체를 이용하여 플러그묘의 생산이 시도(Kim 등, 2002)된 이래 묘소질이 우수한 감자 플러그묘를 생산하기 위한 연구가 지속되고 있다(이 등, 2002, 2003). 묘소질은 정식 후 활착의 용이, 수량 증대 및 품질의 우수성을 제공하는 잠재력으로서, 초장, 절간장, 엽형, 엽색 등과 같은 외적 소질과 광합성속도, 엽록소함량, 근활력 등 내적 소질로 구분된다(Kim, 2002). (중략)

  • PDF

A Study on the Measurement Method for Benthic Nutrient Flux in Freshwater Sediments (담수 퇴적물의 영양염 용출 측정 방법에 관한 고찰)

  • Kim, Kyung Hee;Kim, Sung-Han;Jin, Dal Rae;Huh, In Ae;Hyun, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.288-302
    • /
    • 2017
  • Accurate measurement of benthic nutrient fluxes (BNF) is a prerequisite for evaluating the effect of sediments on nutrient cycle in the surface water. The intact sediment cores were collected in July 2015 at the midstream of Nakdong River. We identified pre-incubation time (6, 12, 24 hr), dissolved oxygen concentration (90, 70, 50% saturation), diffusive boundary layer thickness (0, 0.6-0.8, 1.2-1.4 mm), and incubation temperature (10, 17, 20, $25^{\circ}C$) as the most important control factors, and measured the BNF fluctuation with the variation of these factors using the laboratory sediment core incubation method. Since the chemical composition, redox condition, hydrodynamic regimes and microbial activities at the sediment-water interface were changed as a result of the alteration of control factors, sediment core incubation should be conducted under as close to the natural conditions of study site as possible, in order to produce the results similar to actual values. Relative percentage differences between two replicates were below 20% in most control factors, which showed satisfactory precision for strict compliance with the experimental conditions and procedures. In the further studies, we will compare the results of core incubation with those of in situ measurements to confirm the accuracy of the sediment core incubation method.

Response of Nutrient Solution and Photosynthetic Photon Flux Density for Growth and Accumulation of Antioxidant in Agastache rugosa under Hydroponic Culture Systems (식물공장에서 양액의 종류 및 PPFD가 배초향의 생장 및 항산화 물질에 미치는 영향)

  • Kim, Sung Jin;Bok, Kwon Jung;Lam, Vu Phong;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.249-257
    • /
    • 2017
  • Agastache rugosa, is a perennial medicinal plant commonly used in Chinese herbalism, and may have anti-atherogenic and antibacterial properties. Here in this study, we investigated the growth and variations in antioxidant contents of A. rugosa in response to nutrient solution and photosynthetic photon flux density (PPFD) with artificial lighting for a hydroponics culture. Fluorescent light at 150, and $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD with a 16/8 (light/dark) photoperiod, combined with four different nutrient solutions [developed by Horticulture experiment station in Japan (HES), University of Seoul (UOS), Europe vegetable research center (EVR), Otsuka-house 1A (OTS)], were used in a hydroponics culture system for 6 weeks. The shoot and root dry weights of A. rugosa grown with the OTS were significantly higher than those of other nutrient solutions. The amount of tilianin was the highest grown with the OTS, followed by EVR, HES, and UOS. Total acacetin content was the highest in A. rugosa grown under EVR which was statistically similar with OTS. The A. rugosa grown under $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD produced higher fresh weight and both acacetin and tilianin contents than that grown under $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD. The present results suggested that OTS along with $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD could be an optimum growing condition for better growth and higher accumulation of tilianin and acacetin contents in A. rugosa with hydroponic culture systems in a plant factory.

Contribution of Nutrient Flux through the Korea Strait to a Primary Production in the Warm Region of the East Sea (동해 난수역의 일차생산에 대한 대한해협 유입 영양염의 기여)

  • Lee, Tongsup;Rho, Taekeun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.65-69
    • /
    • 2013
  • In situ measurement of a primary production in East Sea, a marginal sea with a fair accessibility, is nonetheless an arduous task because of dynamic variability. In this study, we estimated the mean value of background (gross) primary production over the warm region of the East Sea based on a biogeochemical hypothesis. We propose an immiscible-shoaling hypothesis for the estimation of primary production, which assumes that primary production in the warm region occurred only by the nutrient supply through the Korea Strait. Annual primary production thus estimated is $209\;gC\;m^{-2}\;y^{-1}$, which is comparable to the satellite-based estimates of net primary production in the region. However, since this hypothesis assumes that primary production is based on only the new nutrients supplied to the system, primary production would increase by 40% if we release the assumption, and assume f = 0.6. This suggests that nutrient influx through the Korea Strait alone is more than enough to support primary production previously reported. Primary production may increase as much as two times if we considered other external perturbations excluded intentionally to estimate the background level of primary production, such as coastal upwelling, submerged ground water discharge, aeolian input, ocean dumping, and mixing by typhoons as well as the contribution of cyanobacteria that has not been quantified in the region. This implies the primary production in the warm region of the East Sea would be comparable to that of the Peru upwelling region with f = 0.6.