DOI QR코드

DOI QR Code

Inorganic Nutrient Inputs from Precipitation, Throughfall, and Stemflow in Pinus densiflora and Quercus mongolica Stands in an Urban Forest Ecosystem

  • Kim, Kee Dae (Department of Environmental Education, Korea National University of Education)
  • Received : 2019.07.01
  • Accepted : 2019.09.05
  • Published : 2019.10.31

Abstract

We measured the amount of precipitation, stemflow, and throughfall and concentrations of nine major inorganic nutrients ($H^+$, ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$) to investigate the nutrient inputs into soil from precipitation in Pinus densiflora and Quercus mongolica stands from September 2015 to August 2016. The precipitation inputs of $H^+$, ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$ into soil were 0.170, 15.124, 42.227, 19.218, 14.050, 15.887, 22.391, 5.431, and $129.440kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, respectively. The P. densiflora stemflow inputs were 0.008, 0.784, 1.652, 1.044, 0.476, 0.651, 1.509, 0.278, and $9.098kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, and those for Q. mongolica were 0.008, 0.684, 2.429, 2.417, 2.941, 1.398, 2.407, 0.436, and $13.504kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, respectively. The P. densiflora throughfall inputs were 0.042, 21.518, 52.207 27.694, 20.060, 24.049, 37.229, 10.241, and $153.790kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, and those for Q. mongolica were 0.032, 15.068, 42.834, 21.219, 20.294, 20.237, 24.288, 5.647, and $119.134kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, respectively. Of the total throughfall flux (i.e., stemflow + throughfall flux) of the nine ions for the two species, ${SO_4}^{2-}$ had the greatest total throughfall flux and $H^+$ had the lowest. The net throughfall fluxes of the ions for the two species had various correlations with the precedent dry period, rainfall intensity, rainfall amount, and pH of precipitation. The soil pH under the Q. mongolica canopy (4.88) was higher than that under the P. densiflora canopy (4.34). The difference in the soil pH between the two stands was significant (P < 0.01), but the difference in soil pH by the distance from the stems of the two species was not (P > 0.01). This study shows the enrichments of inorganic nutrients by two representative urban forests in temperate regions and the roles of urban forests during rainfall events in a year.

Keywords

References

  1. Alenas, I., Skarby., L., 1988, Throughfall of plant nutrients in relation to crown thinning in a Swedish coniferous forest, Water Air Soil Poll., 38, 223-237. https://doi.org/10.1007/BF00280754
  2. Allen, S. E., Grimshaw, H. M., Parkinson, J. A., Christopher, Q., 1974, Chemical analysis of ecological materials. Blackwell scientific publications, 25.
  3. Andersson, T., 1991, Influence of stemflow and throughfall from common oak (Quercus robur) on soil chemistry and vegetation patterns, Can. J. For. Res., 21, 917. https://doi.org/10.1139/x91-127
  4. APHA, 1989, Standard methods for the examination of water and wastewater, APHA, Baltimore.
  5. Bache, B. W., 1980, Effects of acid precipitation on terrestrial ecosystems, NATO conference series 1, 183.
  6. Bidleman, T. F., 1988, Atmospheric processes: wet and dry deposition of organic compounds are controlled by their vapor-particle partitioning, Environ. Sci. Technol., 22, 361-367. https://doi.org/10.1021/es00169a002
  7. Bormann, F. H., Likens, G. E., 1967, Nutrient Cycling, Science, 155, 424-429. https://doi.org/10.1126/science.155.3761.424
  8. Bredemeier, 1988, Forest canopy transformation of atmospheric deposition, Water Air Soil Poll., 40, 136-137.
  9. Cho, K. S., Kang, I. K., Kwon, O. K., Kim, B. C., Na, K. H., Ahn, T. I., Lee, J. B., Lee, C. K., Lee, H. K., Kim, S. H., Choi, J. K., 1991, Methods for wetland environment survey, Donghwa Technology Publishing Co., 365.
  10. Choi, H. S., 1984, A Model of branching growth pattern in vascular trees, Doctoral thesis, Ewha Womans University, 8.
  11. Courtney, F. M., Trudgill, S. T., 1984, The soil: an introduction to soil study, Hodder & Stoughton, London, 30-36.
  12. Esser, G., Overdieck, D., 1991, Modern Ecology: basic and applied aspects, ELSEVIER, 195-200.
  13. Fahey, T. J., Yavitt, J. B., Joice, G., 1988, Precipitation and throughfall chemistry in Pinus contorta ssp. latifolia ecosystem, Southeastern Wyoming, Can. J. For. Res., 18, 337-345. https://doi.org/10.1139/x88-051
  14. Falkengren-grerup, U., 1989, Effect of stemflow on beech forest soils and vegetation in Southern Sweden, J. Appl. Ecol., 26, 341-352. https://doi.org/10.2307/2403671
  15. Feller, M. C., 1977, Nutrient movement through western Hemlock-Western Redcedar ecosystems in Southwestern British Columbia, Ecology, 58, 1269-1283. https://doi.org/10.2307/1935080
  16. Gersper, P. L., Holowaychuk, N., 1970, Effects of stemflow water on a Miami soil under a beech tree: II. chemical properties, Soil. Sci. Soc. Amer. Proc., 34, 786-794. https://doi.org/10.2136/sssaj1970.03615995003400050033x
  17. Gosz, J. R., 1980, Nutrient budget studies for forests along an elevational gradient in New Mexico, Ecology, 61, 515-521. https://doi.org/10.2307/1937417
  18. Hazlett, P. W., Foster, N. W., 1989, Sources of acidity in forest-floor percolate from a maple-birch ecosystem, Water Air Soil Poll., 46, 87-97. https://doi.org/10.1007/BF00192847
  19. Howells, G., 1990, Acid rain and acid waters, Ellis Horwood, Chichester, 64-65.
  20. Ivens, W., 1990, Sulfur deposition onto European forests: throughfall data and model estimates, Tellus, 42B, 294-295. https://doi.org/10.3402/tellusb.v42i3.15222
  21. Jakucs, P., 1985, Ecology of an oak forest in Hungary, AKADEMIAI KIADO, Budapest, 406.
  22. Jorge, L. F., Lugo, A. E., 1985, Ecosystem dynamics of a subtropical floodplain forest, Ecol. Monogr., 55, 351-369. https://doi.org/10.2307/1942582
  23. Kil, B. S., Yim, Y. J., 1983, Allelopathic dffects of Pinus densiflora on undergrowth of red pine forest, J. Chem. Ecol., 9, 1135-1151. https://doi.org/10.1007/BF00982217
  24. Killingbeck, K. T., Wali, M. K., 1978, Analysis of a north Dacoda gallery forest, nutrient, trace element and productivity relations, Oikos, 30, 29-60. https://doi.org/10.2307/3543521
  25. Kim, J. H., Kwak, Y. S., 1992, Secular changes of density, litterfall, phytomass and primary productivity in Mongolian Oak (Quercus mongolica) forest, J. Ecol. Environ., 15, 19-33.
  26. Kim, J. H., Rhyu, T. C., Kim, K. D., 1994, Growth decline and abnormal vertical distribution of fine roots of pitch pine in Seoul Metropolitan Area, J. Ecol. Environ., 17, 261-275.
  27. Kim, K. H., Woo, B. M., 1988, Study on rainfall interception loss from canopy in forest (I), J. Korean Soc. For. Sci., 77, 331-337.
  28. Kostelniket, K. M., Lynch, J. A., Grimm, J. W., Corbett, E. S., 1989, Sample size Requirements for estimation of throughfall chemistry beneath a mixed hardwood forest, J. Environ. Qual., 18, 274-280. https://doi.org/10.2134/jeq1989.00472425001800030005x
  29. Lee, C. S., 1984, Relationships between soil environmental factors and the growth of annual ring of Pinus densiflora on rocky mountains, MS thesis, Seoul National University, 3.
  30. Lee. J. W., 1992, Study on measuring the water yield from the small forested-watersheds, MS thesis, Seoul National University, 50.
  31. Likens, G. E., Bormann, F. H., Eaton, J. S., 1980, Effects of acid precipitation on terrestrial ecosystems, NATO conference series, 1, 450-462.
  32. Lindberg, S. E., Lovett, G. M., 1992, Deposition and forest canopy interactions of airborne sulfur:results from the integrated forest study, Atmos. Environ., 26, 1477-1492. https://doi.org/10.1016/0960-1686(92)90133-6
  33. Lindberg, S. E., Lovett, G. M., Richter, D. D., Johnson, D. W., 1986, Atmospheric deposition and canopy interactions of major ions in a forest, Science, 231, 141-143. https://doi.org/10.1126/science.231.4734.141
  34. Madgwick, H. A., Ovington, J. D., 1959, The chemical composition of precipitation in adjacent forest and open plots, Forestry, 32, 14-22. https://doi.org/10.1093/forestry/32.1.14
  35. Mecklenburg, R. A., Tukey, Jr., H. B., 1964, Influence of foliar leaching on root uptake and translocation of calsium-45 to thr stems and foliage of Phaseolus vulgaris, Plant Physiol., 39, 533-536. https://doi.org/10.1104/pp.39.4.533
  36. Mehra, M. S., Pathak, P. C., Singh, J. S., 1985, Nutrient movement in litter fall and precipitation components for Central Himalayan Forests, Ann. Bot., 55, 153-170. https://doi.org/10.1093/oxfordjournals.aob.a086887
  37. Miller, H. G., Cooper, J. M., Miller, J. D., 1975, Effect of nitrogen supply on nutrients in litter fall and crown leaching in a stand of corsican pine, J. Appl. Ecol., 13, 233-248. https://doi.org/10.2307/2401943
  38. Moore, P. D., Chapman, S. B., 1986, Methods in plant ecology, Blackwell Scientific Publications, 291-335.
  39. Orion, 1986, Chloride electrode instruction manual, Orion Research Inc., Boston, 2-32.
  40. Parker, G. G., 1983, Throughfall and stemflow in the forest nutrient cycle, Adv. Ecol. Res., 13, 58-134.
  41. Pathak, P. C., Pandey, A. N., Singh, J. S., 1985, Apportionment of rainfall in Central Himalayan forests (INDIA), J. Hyd., 76, 319-332. https://doi.org/10.1016/0022-1694(85)90140-4
  42. Paul, E. A., Clark, F. E., 1989, Soil microbiology and biochemistry, Academic Press Inc., New York, 24-26.
  43. Percy, K. E., 1989, Vegetation, soils and ion transfer through the forest canopy in two Nova Scotia Lake basins, Water Air Soil Poll., 46, 83.
  44. Potter, C. S., Ragsdale, H. L., Wayne, W. T., 1991, Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy, J. Ecol., 79, 97-115. https://doi.org/10.2307/2260786
  45. Reuss, J. O., Johnson, D. W., 1986, Acid deposition and the acidification of soils and waters, Springer-Verlag, 10.
  46. Roda, F., Avila, A., Bonilla, D., 1990, Precipitation, throughfall, soil solution and stream-water chemistry in Holm-Oak (Quercus ilex) Forest, J. Hyd., 116, 171-173.
  47. SAS, 2015, SAS/STAT Guide for Personal Computers, SAS Institute Inc., Cary, 273-274.
  48. Seo, K. U., 1988, Nitrogen content in throughfall and stemflow at a Quercus mongolica stand and a Pinus koraiensis plantation in Kwangju-gun, Kyonggi-do, Korea, MS thesis, Seoul National University, 25.
  49. Simmons, G. L., Kelly, J. M., 1989, Effects of acidic precipitation, $O_3$, and soil Mg status on throughfall, soil, and seedling loblolly pine nutrient concentration, Water Air Soil Poll, 43, 119-210. https://doi.org/10.1007/BF00175588
  50. So, S. S., Lee, C. W., 1986, Measurements of weather, Kyomunsa, Seoul, 139-159.
  51. Sokal, R. R., Rohlf, F. J., 1981, Biometry, W. H. Freeman and Company, New York, 58-59.
  52. Stephen, J. L., Wigington, Jr., P. J., 1987, Oxidized nitrogen in precipitation, throughfall, and streamfall from a forested watershed in Oklahoma, Water Resour. Bull., 23, 1069-1076. https://doi.org/10.1111/j.1752-1688.1987.tb00857.x
  53. Summers, P. W., Whelpdalf, D. M., 1976, Acid precipitation in Canada, Proc. 1st international symp. on acid precipitation and forest ecosystem, 431-433.
  54. Veneklaas, E. J., 1990, Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forest, Colombia, J. Ecol., 78, 977. https://doi.org/10.2307/2260947
  55. Verstraten, J. M., Dopheide, J. C. R., Duysings, J. J. H. M., Tietema, A., Bouten, W., 1990, The proton cycle of a deciduous forest ecosystem in the Netherlands and its implications for soil acidification, Plant Soil, 127, 61-69. https://doi.org/10.1007/BF00010837
  56. Wolt, J. D., 1990, Mechanisms of forest response to acidic deposition: Effects of acidic deposition on the chemical form and bioavailability of soil aluminum and manganese, Springer-Verlag, New York, 62-107.
  57. Zinke, P. J., 1959, The pattern of influence of individual forest trees on soil properties, Ecology, 43, 130-131. https://doi.org/10.2307/1932049
  58. Zinke, P. J., 1962, The pattern of influence of individual forest trees on soil properties, Ecology, 43, 130-133. https://doi.org/10.2307/1932049