• 제목/요약/키워드: Nutrient Accumulation

검색결과 238건 처리시간 0.021초

오수처리용 인공습지내 토양의 이화학적 특성조사 (A Study on the Physical and Chemical Characteristics of the Constructed Wetland Soil for Sewage Treatment)

  • 윤춘경;권태영;우선호
    • 농촌계획
    • /
    • 제5권2호
    • /
    • pp.24-29
    • /
    • 1999
  • The soil from constructed wetland system for sewage treatment was analyzed to examine physical and chemical characteristics. Clogging and lowered permeability were the physical matters of concern, and nutrient and salt accumulation were the chemical matters of concern. However, the soil properties of the constructed wetland system after 3 year operation demonstrated no degradation and still the soil works almost same as the initial stage. Encouragingly, no sludge accumulation was observed inside the system. Therefore, it implies that the wetland sewage treatment system can work continuously as long as it is operated and managed properly not to cause excessive pollutant loading.

  • PDF

Cadmium-Induced Phytotoxicity in Tomato Seedlings Due to the Accumulation of H2O2 That Results from the Reduced Activities of H2O2 Detoxifying Enzymes

  • Cho, Un-Haing
    • The Korean Journal of Ecology
    • /
    • 제27권2호
    • /
    • pp.107-114
    • /
    • 2004
  • Tomato (Lycopersicon esculentum) seedlings exposed to various concentrations of $CdC1_2$ (0∼100 $\mu$M) in the nutrient solution for up to 9 days were analyzed with the seedling growth, $H_2O_2$ production, glutathione levels and activity changes of enzymes related to $H_2O_2$ removal. The growth of seedlings was inhibited with over 50 $\mu$M Cd, whereas the levels of $H_2O_2$ and glutathione were enhanced with Cd exposure level and time. Meanwhile, Cd exposure increased the activities of catalase (CAT) and glutathione reductase (GR) but decreased the activities of dehydroascorbate acid reductase (DHAR) and ascorbate peroxidase (APX) in both leaves and roots. These results suggest that the altered activities of antioxidant enzymes particularly involved in the $H_2O_2$ removal and the subsequent $H_2O$$_2$ accumulation could induce the Cd-induced phytotoxicity.

북동태평양 북위 10.5°에서 동물플랑크톤의 경도별 분포 특성 (Longitudinal Distribution of Zooplankton at 10.5°N in the Northeastern Pacific)

  • 강정훈;조규희;손주원;김웅서
    • Ocean and Polar Research
    • /
    • 제29권4호
    • /
    • pp.283-295
    • /
    • 2007
  • We investigated the longitudinal variations in zooplankton abundances and their related physicochemical properties at nine stations located between $136^{\circ}W$ and $128^{\circ}W$ at $10.5^{\circ}N$ in the northeastern Pacific in summer 2004. Temperature, salinity, inorganic nutrients, chlorophyll-a (hereafter chl-a) and zooplankton ($>200\;{\mu}m$) were sampled within the depth from the surface to 200 m depth at $1^{\circ}$ longitude intervals. Zooplankton($>200\;{\mu}m$) samples were vertically collected at two depth intervals from surface to 200 m, consisting of surface mixed and lower layers (thermocline$\sim$200 m). Longitudinal distributional pattern of hydrological parameters (especially salinity) was physically influenced by the intensity of westward geostrophic current passage relating to the NEC (North Equatorial Current). Data from the longitudinal survey showed clear zonal distributions in the hydrological parameters(temperature, salinity and nutrients). However, spatial patterns of the chl-a concentrations and zooplankton abundances were mostly independent of the zonal distributions of hydrological parameters. The two peaks of zooplankton abundance in the surface mixed layer were characterized by different controlling factors such as bottom-up control from nutrients to zooplankton ($129^{\circ}W$) and accumulation by increment of friction force and taxonomic interrelationship ($133^{\circ}$ and $134^{\circ}W$). Divergence-related upwelling caused introduction of nutrients into surface waters leading to the increment of chl-a concentration and zooplankton abundances ($129^{\circ}W$). Increased friction force in relation to reduced flow rates of geostrophic currents caused accumulation of zooplankton drifting from eastern stations of study area($133^{\circ}$ and $134^{\circ}W$). Besides, high correlation between immature copepods and carnivorous groups such as chaetognaths and cyclopoids also possibly contributed to the enhanced total abundance of zooplankton in the surface mixed layer (p<0.05). Zooplankton community was divided into three groups (A, B, C) which consecutively included the eastern peak of zooplankton($129^{\circ}W$), the western peak($133^{\circ}$ and $134^{\circ}W$) and high nutrient but low chl-a concentration and zooplankton abundance ($136^{\circ}W$). Moreover, Group B corresponded to the westward movement of low saline waters(<33.6 psu) from 128 to $132^{\circ}W$. In summary, longitudinal distributions of zooplankton community was characterized by three different controlling factors: bottom-up control ($129^{\circ}W$), accumulation by increased friction force and relationships among zooplankton groups ($133^{\circ}$ and $134^{\circ}W$), and mismatch between hydrological parameters and zooplankton in the high nutrient low chlorophyll area ($136^{\circ}W$) during the study period.

생태계모델을 이용한 가막만의 영양염 거동 특성 평가 (Estimation of Nutrients Transport in Kamak Bay using the Eco-hydrodynamic Model)

  • 김동명
    • 한국환경과학회지
    • /
    • 제12권7호
    • /
    • pp.745-751
    • /
    • 2003
  • The three-dimensional eco-hydrodynamic model was applied to estimate the physical process in terms of nutrients and net uptake(or regeneration) rate of nutrients in Kamak Bay for scenario analysis to find proper management plan. The estimation results of the physical process in terms of nutrients shelved that transportation of nutrients is dominant in surface level while accumulation of nutrients is dominant in bottom level. In the case of dissolved inorganic nitrogen, the results showed that the net uptake rate was 0∼60 mg/㎡/day in surface level(0∼3m), and the net regeneration rate was 0.0∼10.0 mg/㎡/day in middle level(3∼6m) and above 10mg/㎡/day in bottom level(6m∼below). In the case of dissolved inorganic phosphorus, the net uptake rate was 0.0∼3.0 mg/㎡/day in surface level, and the net regeneration rate was 0.5∼1.5 mg/㎡/day in middle level and 1.0∼3.0 mg/㎡/day in bottom level. These results indicates that net uptake and transport of nutrients are occurred predominantly at the surface level and the net generation and accumulation are dominant at bottom level. Therefore, it is important to consider the re-supplement of nutrients due to regeneration of bottom water.

Biologics For The Protection Of Forests On The Basis Of Mushroom Phlebiopsis Gigantea With Deep Cultivation On Alcohol Stillage Production

  • Kuznetsov, Ilya
    • 식품보건융합연구
    • /
    • 제4권3호
    • /
    • pp.6-11
    • /
    • 2018
  • In the Republic of Belarus as well as in the world acute problem of protecting forests from diseases and pests. The damage caused by root rot is essential, therefore, the problem of forest protection is an urgent task. The biologics has the greatest prospects in according with traditional methods of struggle. Deep method of cultivation of a mushroom Phlebiopsis gigantea with use of nutrient mediums on the basis of ethanol stillage and its components (fugat) is researched. Feasibility of use stillage as raw materials in production of a biological product for the wood protection against root decay is shown. The effect of different additives (sawdust, fodder yeast) on the accumulation of reactive biological product - oidy has been studed It was determined that the deep cultivation using sawdust of the highest accumulation oidy (1.5 $10^6units/ml$). It was also found that the stillage is the best breeding ground for fungus biomass accumulation (7.9 9.8 g / l) versus fugat (6.0 6.6 g / l). On the basis of research work the technological scheme for production of a biological product were developed. Based on the conducted studies, a technological scheme was proposed for obtaining a biological preparation by deep cultivation of the fungus Phlebiopsis gigantea.

고지방식이를 섭취한 mouse의 hypothalamus에서의 유전자군의 발현양상 변화 (Gene expression profile of hypothalamus isolated in different nutrient feeding mouse)

  • 차민호;김경선;강봉주;심웅섭;윤유식
    • 한국한의학연구원논문집
    • /
    • 제9권1호
    • /
    • pp.145-156
    • /
    • 2003
  • Obesity is caused by imbalance of energy intake and expense. If energy intake is more than its expenditure, body does fat accumulation and affects body weight. It can be fetal disease although obesity is not disease in itself. Central regulatary system is affected by many neurotransmitters regulating .food intake in brain. Hypothalamus was known as one of food intake regulation in CNS. In order to investigate gene expression difference in hypothalamus by different nutrient, we used C57/BL6 control mouse and db-/db- mouse. They divided each of two group with mouse, and fed control diet and high-fat diet for 4 weeks. Each of control and high-fat diet contained 11.7% and 59.7% fat, respectively. Then we performed microarray assay with them. We compared among changed genes in hypothalamus region. In the results, we observed that increased genes were more than decreased genes. Although hypothalamus size of db-/db- mouse is smaller than that of C57/BL6, more genes were affected in db-/db- mouse. In this study, many genes are affected by nutrient in hypothalamus region.

  • PDF

Effects of DTPA application on Growth of Red Pepper (Capsicum annuum L.) and Chemical Properties of Nutrient Accumulated Soil in Plastic film House

  • Kim, Myung Sook;Kim, Yoo Hak;Lee, Chang Hoon;Park, Seong Jin;Ko, Byong Gu;Yun, Sun Gang;Hyun, Byung Keun
    • 한국토양비료학회지
    • /
    • 제48권4호
    • /
    • pp.312-317
    • /
    • 2015
  • This study was conducted to evaluate effects of diethylene triamine penta acetic acid (DTPA) treatment on growth of red pepper and nutrient availability to salt accumulated soil in the plastic film house. The treatments were no application (Control), chemical fertilizers (NPK), DTPA (0.06, 0.13, and 0.19 mM) and the half of chemical fertilizers (NPK) with DTPA 0.06 mM. Fruit yield of red pepper showed no significant difference between the treatments (control, NPK, DTPA 0.06 mM, 0.13 mM, except for DTPA 0.19 mM. Red peppers were killed by DTPA 0.19 mM treatment because the high concentration of DTPA was toxic to crop. However, dry mass (stem and leave) and nutrient uptake of red pepper in DTPA 0.06 mM treatment increased significantly compared with those of control. In particular, nutrient uptake of red pepper in DTPA 0.06 mM treatment increased in the order of Fe, Mn, and Zn > Ca and Mg > K, as the magnitude of the stability constants of DTPA. Thus the application of DTPA 0.06 mM was the most effective for the alleviation of nutrient accumulation in the plastic film house soils.

Nutrient production from dairy cattle manure and loading on arable land

  • Won, Seunggun;Shim, Soo-Min;You, Byung-Gu;Choi, Yoon-Seok;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권1호
    • /
    • pp.125-132
    • /
    • 2017
  • Objective: Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods: Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (${\Delta}P=0$). Results: The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion: As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.

대청호 홍수조절지 내 경작활동이 수질에 미치는 영향 (Effect of Cultivation Activity in Daecheong Lake Flood Control Site on Water Quality)

  • 최혜선;전민수;김이형
    • 한국습지학회지
    • /
    • 제22권1호
    • /
    • pp.49-58
    • /
    • 2020
  • 경작지의 과다 비료와 퇴비의 사용은 토양내 양분 축적을 증가시키며 잉여 양분은 지표유출 및 지하유출 과정을 통해 수질 오염과 녹조발생 등을 유발시킨다. 또한 토양내 과다 양분축적과 함께 지속적 작물 재배는 토양의 산성화를 초래하여 토양의 물리적 구조를 변화시켜 양분의 침출을 더욱 증가시킨다. 대청호 저수구역 내 경작은 대청호의 수질에 직접적 영향을 주기도 하며, 대청댐 수위상승시 침수되어 토양 내 양분이 용출되기도 한다. 본 연구는 대청댐 저수구역 내 경작지의 물리화학적 성상을 분석하여 대청호 수질관리 대책수립에 활용가능한 기초자료를 제공하고자 수행되었다. 대청호 저수구역 경작지 토양은 잉여양분이 이동 가능한 Sandy Loam 토양으로 분류되었다. 작물별 토양내 화학적 성상은 작물별 서로 다른 시비량에 크게 영향을 받는 것으로 나타났다. 그러나 농민의 경작방식과 미기후 변화 등도 경작지 토양의 화학적 성상변화에 영향을 주는 것으로 평가되었다. 경작지 토양내 양분양은 지하수 및 인근 하천의 수질 및 대청호 주요 녹조발생에 영향을 주는 것으로 나타났다. 논에서의 양분유출은 봄철 강우시 집중되었으며, 밭에서의 양분유출은 여름에서 가을까지의 기저유출 및 멀칭으로 인한 지표유출 등이 영향을 주는 것으로 나타났다. 하천내부의 과다한 식생과 경작지의 유기성 농업잔재물도 하천의 유기물 및 영양염류 증가에 기여하는 것으로 평가되었다. 본 연구결과는 대청호 녹조발생 저감을 위한 저수구역내 경작지 관리를 위한 우선 관리지역 지정 및 관리기법 선정에 활용될 수 있다.

식물공장에서 양액의 종류 및 PPFD가 배초향의 생장 및 항산화 물질에 미치는 영향 (Response of Nutrient Solution and Photosynthetic Photon Flux Density for Growth and Accumulation of Antioxidant in Agastache rugosa under Hydroponic Culture Systems)

  • 김성진;복권정;푸동람;박종석
    • 생물환경조절학회지
    • /
    • 제26권4호
    • /
    • pp.249-257
    • /
    • 2017
  • 배초향은 항동맥경화나 항박테리아의 특성을 가지는 한약재에 널리 사용되는 영년생 약용식물이다. 연구의 목적은 수경재배에서 배양액의 종류와 PPFD값에 따른 배초향의 생장 및 항산화 물질의 변화를 조사하는 것이다. 배초향은 주야간 16:8 시간의 일장조건에서 150과 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD 조건과 일본원시(HES), 서울시립대(UOS), 유럽채소연구소(EVR), 오오츠카 배양액(OTS)을 이용하여 6주간 재배하였다. OTS 배양액조건에서 자란 배초향의 지상부 및 지하부 건물중은 다른 배양액 처리구와 비교하여 유의적으로 높았다. 배초향의 틸리아닌 함량은 OTS 처리에서 가장 높았으며 다음으로 EVR, HES, UOS 순서로 낮아졌다. 총 아카세틴의 함량은 EVR처리에서 가장 높았으나 OTS처리와는 유의적 차이를 보이지 않았다. 또한 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD 조건에서 자란 배초향은 PPFD 150처리구와 비교하여 유의적으로 생체중과 건물중이 증가하였으며 기능성 물질은 틸리아닌과 아카세틴의 함량도 높았다. 본 연구는 수경재배 방식을 이용하여 식물공장에서 배초향을 재배할 경우 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD 조건과 OTS 배양액 조건에서 경제적인 광원조건으로 최적 바이오매스 생산량과 틸라아닌과 아카세틴의 함량을 증가시킬 수 있을 것으로 제안한다.