• Title/Summary/Keyword: Nutrient Accumulation

Search Result 239, Processing Time 0.024 seconds

Effects of Light Intensity, Nutrient Solution Compositions before Harvest and the Time of Nutrient Solution Removal on Nitrate Contents in Hydroponically-Grown Leaf Lettuces in Closed Plant Production System (폐쇄형 식물생산시스템에서 광도, 수확 전 양액조성 및 양액결제시기가 잎상추의 체내 질산염 함량에 미치는 영향)

  • Yeo, Kyung-Hwan;Choi, Gyeong-Lee;Lee, Jung-Sup;Lee, Jae-Han;Park, Kyoung-Sub;Kim, Jin-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • The nitrate ($NO_3{^-}$) accumulation of hydroponically grown leafy vegetables may increase in the condition of a closed-type plant production system with low light intensity due to low activity of enzymes involved in nitrogen assimilation and the use of $NO_3-N$ as major nitrogen source. The objective of this study is to investigate the effects of light intensities, nutrient solution compositions and the time of nutrient solution removal before harvest on nitrate contents of hydroponically-grown lettuces in a closed plant production system. The reduction of nitrate contents in leafy lettuces 'Cheongchima' was higher in the treatments of 'TW' (nutrient solution removal) and '$(NH_4)_2CO_3$' (use of ammonium carbonate as nitrogen source) than those in other treatments, which significantly lowered fresh weight and leaf area of the plants. In the light intensity of $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the nitrate content was effectively reduced without causing any growth retardation, by substitution of the nutrient solution composition that $NO_3-N$ was removed ('$NO_3-N$ removal' treatment) or the half strength of standard nutrient solution was applied ('1/2 S' treatment), for 7days before harvest. The effects of light intensity and the time of nutrient solution removal before harvest on growth and nitrate contents in leafy lettuces were investigated. The nitrate contents in leaves under the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ before nutrient solution removal were lower than those of 100 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The removal of nutrient solution for 7 days before harvest quickly reduced the amount of nitrates in leaves in all the light intensities with a greater degree under the $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light condition, while the 7 days-removal with both 200 and $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light conditions caused decrease in 16~31% of leaf area and 20~35% of fresh weight, compared to the 3 days-removal treatment. The nitrate contents were greatly reduced from 3,018 to 1,035 in $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and 2,021 to 480 ppm in the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, with the nutrient solution removal for 3 days before harvest, without causing any deterioration in growth and product quality. The vitamin C contents in leaves were higher in the treatment of nutrient solution removal for both 3 and 5 days before harvest with the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ than those in the light condition of 100 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$.

Fluoride in soil and plant

  • Hong, Byeong-Deok;Joo, Ri-Na;Lee, Kyo-Suk;Lee, Dong-Sung;Rhie, Ja-Hyun;Min, Se-won;Song, Seung-Geun;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.522-536
    • /
    • 2016
  • Fluorine is unique chemical element which occurs naturally, but is not an essential nutrient for plants. Fluoride toxicity can arise due to excessive fluoride intake from a variety of natural or manmade sources. Fluoride is phytotoxic to most plants. Plants which are sensitive for fluorine exposure even low concentrations of fluorine can cause leave damage and a decline in growth. All vegetation contains some fluoride absorbed from soil and water. The highest levels of F in field-grown vegetables are found up to $40mg\;kg^{-1}$ fresh weight although fluoride is relatively immobile and is not easily leached in soil because most of the fluoride was not readily soluble or exchangeable. Also, high concentrations of fluoride primarily associated with the soil colloid or clay fraction can increase fluoride levels in soil solution, increasing uptake via the plant root. In soils more than 90 percent of the natural fluoride ranging from 20 to $1,000{\mu}g\;g^{-1}$ is insoluble, or tightly bound to soil particles. The excess accumulation of fluorides in vegetation leads to visible leaf injury, damage to fruits, changes in the yield. The amount of fluoride taken up by plants depending on the type of plant, the nature of the soil, and the amount and form of fluoride in the soil should be controlled. Conclusively, fluoride is possible and long-term pollution effects on plant growth through accumulation of the fluoride retained in the soil.

Changes of Organic Solutes and Antioxidative Enzyme Activity in Rice Seedling under Salt Stress

  • Park So-Hyeon;Sung Jwa-Kyung;Lee Su-Yeon;Lee Ju-Young;Jang Byoung-Choon;Song Beom-Heom;Kim Tae-Wan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.5
    • /
    • pp.325-331
    • /
    • 2005
  • Seedlings of two rice genotyopes, cvs. Ilpumbyeo and Gancheokbyeo, were exposed to 0, 50 and 100 mM NaCl in nutrient solution for nine days. Plants were collected at the interval of 3 days and organic and inorganic solutes in leaves and roots and antioxidative enzyme activity in leaves were determined. Under salinity, the accumulation of soluble sugars occurred considerably in the older leaves of stressed seedlings compared to younger leaves and roots. The endogenous Na+ contents markedly increased at higher NaCl concentration in leaves and roots of seedlings, though it was higher accumulated in roots. Salinity resulted in an excessive proline accumulation in the stressed plants. A more pronounced increase was observed in Gancheokbyeo leaves. SOD activity in Impumbyeo cannot found any remarkable change, whereas, in Gancheokbyeo, its activity was rapidly decreased. CAT and POD activities increased with an increase in NaCl concentration in both genotypes. In sum­mary, the high capacity of rice seedlings to overcome an unfavorable growth condition such salt stress appears to be related to an adequate partition of organic solutes between shoots and roots and to changes in absorption, transport and re-translocation of salts.

Late Pleistocene Paleoceanographic Changes of the West Equatorial Pacific (서태평양 적도 지역의 플라이스토세 후기 고해양 변화)

  • Yoo, Chan-Min;Hyeong, Ki-Seong;Moon, Jai-Woon;Kim, Ki-Hyune;Chi, Sang-Bum
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.175-185
    • /
    • 2004
  • To delineate Late Pleistocene paleoceanographic change of the West Pacific, we analyzed the oxygen and carbon isotopic ratios of two planktonic foraminifera species (G. sacculifer and N. dutertrei) from a piston core (KODOS-313) taken from the West equatorial Pacific, and they are compared with the published results of the East Pacific (ODP site 847 and RC 11-210), in terms of relative amounts and mass accumulation rates of $CaCO_3$ and eolian component, back to marine isotopic stage (MIS) 6. Differences in oxygen and carbon isotope values between two foraminifear species ($0.75%_{\circ}$ in ${\delta}^{18}O$, $0.05%_{\circ}$ in ${\delta}^{13}C$) are less than those of the East Pacific ($1.30%_{\circ}$ in ${\delta}^{18}O$, $0.14%_{\circ}$ in ${\delta}^{13}C$), which indicates smaller vertical contrasts in both temperature and nutrient between mixing-zone and thermocline in the West Pacific. Strong deviation in${\delta}^{18}O$ of G. sacculifer from SPECMAP suggests the carbonate fraction of KODOS-313 was subjected to partial dissolution by bottom water under lysocline. Lower accumulation rates of $CaCO_3$ and eolian component during glacial times are likely due to low sedimentation rate (ave. 0.75 cm/1000 yr) combined with carbonate dissolution in KODOS-313 site. However, the high $CaCO_3$ contents during the glacial periods clearly follow the general pattern of equatorial Pacific ocean.

Effect of High Carbohydrate Intakes on the Obesity Index, Blood Pressure, and Blood Lipid Levels in Patients with Cardiovascular Disease

  • Lee, Seung-Min;Ahn, Hyang-Sook;Lee, Lil-Ha
    • Journal of Nutrition and Health
    • /
    • v.30 no.4
    • /
    • pp.451-457
    • /
    • 1997
  • This study was designed to investigate the effect of the ratio of energy from carbohydrate to total calories on dietary intake, obesity index, blood pressure, and blood lipid content in cardiovascular disease patients over 35 years old. A total of 552(227 male, 325 female) subjects were divided into three groups according to carbohydrate/total energy ratio : carbohydrate ratios below 25 percent were in the low carbohydrate group( <61.1%), between 25 and 75 percent carbohydrate were medium($\geq$61.1-<74.7%), and higher than 75 percent were in the high carbohydrate group($\geq$74.7%). The anthropometric data, nutrient intake, serum lipid levels, and blood pressure of each group were compared with one another. For men and women with high carbohydrate intakes, Inadequate nutritional intake was observed. Abdominal fat accumulation and blood TC level for men in the high carbohydrate group were higher than in medium or low carbohydrate groups. Therefore, it seems that high carbohydrate intake may produce adverse effects on abdominal fat accumulation and blood lipid patterns. Blood pressure, however, was significantly higher for women in low and high carbohydrate groups than in medium carbohydrate group. These results suggest that extremely high and low carbohydrate intake may raise the risk of cardiovascular disease and that it is necessary to consume nutritionally balanced meals. This can be done by controlling the ratio of dietary carbohydrate at a medium level in order to prevent and/or to reduce the risk.

  • PDF

Production of Polyhydroxybutyrate from Crude Glycerol and Spent Coffee Grounds Extract by Bacillus cereus Isolated from Sewage Treatment Plant

  • Lee, Gi Na;Choi, So Young;Na, Jonguk;Youn, HaJin;Jang, Yu-Sin
    • KSBB Journal
    • /
    • v.29 no.6
    • /
    • pp.399-404
    • /
    • 2014
  • Production of biodegradable polymer polyhydroxyalkanoates (PHAs) from industrial wastes exhibits several advantages such as recycle of waste and the production of high valuable products. To this end, this study aimed at isolating from the sewage treatment plant a PHA producing bacterium capable of utilizing wastes generated from biodiesel and food industries. A Bacillus cereus strain capable of producing poly(3-hydroxybutyrate) [P(3HB)] was isolated, which was followed by confirmation of P(3HB) accumulation by gas-chromatographic analyses. Then, the effects of nutrient limitation on P(3HB) production by B. cereus was first examined. Cells cultured in a minimal medium under the limitation of nitrogen, potassium and sulfur suggested that nitrogen limitation allows the highest P(3HB) accumulation. Next, production of P(3HB) was examined from both waste of biodiesel production (crude glycerol) and waste from food industry (spent coffee grounds). Cells cultured in nitrogen-limited minimal medium supplemented crude glycerol and waste spent coffee grounds extract accumulated P(3HB) to the contents of 2.4% and 1.0% of DCW. This is the first report demonstrating the capability of B. cereus to produce P(3HB) from waste raw materials such as crude glycerol and spent coffee grounds.

Improvement of K+ and Na+ Ion homeostasis and salt tolerance by Co-inoculation of arbuscular mycorrhizal fungi (AMF) and spore associated bacteria (SAB)

  • Selvakumar, Gopal;Kim, Kiyoon;Roy, C. Aritra;Jeon, Sunyong;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.246-246
    • /
    • 2017
  • Salinity inhibits plant growth and restricts the efficiency of arbuscular mycorrhizal fungi. The selective uptake of nutrients from the soil and their effective transport to host roots make it essential for plant growth and development under salt stress. AMF spore associated bacteria shown to improve mycorrhizal efficiency under stress. Thus, this study aimed to understand the co-inoculation efficiency of AMF and SAB on maize growth and ion homeostasis under salt stress. Two AMF strains and one SAB were inoculated with maize either alone or in combination with one another. The results of our study showed that AMF and SAB co-inoculation significantly improved dry weight and nutrient uptake of maize under salt stress. Co-inoculation significantly reduced proline accumulation in shoots and Na+ accumulation in roots. Co-inoculation treatment also exhibited the high K+/Na+ ratios in roots at 25 mM NaCl. Mycorrhizal colonization showed positive influence for regulation of ZmAKT2, ZmSOS1 and ZmSKOR gene expressions, contributing to K+ and Na+ ion homeostasis. CLSM view showed that SAB were able move and localize into inter and intra cellular spaces of maize roots. In addition, CLSM view of AMF spores showed that gfp-tagged SAB also associated on the spore outer hyaline layer.

  • PDF

Influence of Sodium Concentrations on Growth, Physiological Disorder Symptoms, and Bed Soil Chemical Properties of 2-Year-Old Ginseng (나트륨 농도가 2년생 인삼의 생육, 생리장해 및 상토의 화학적 특성에 미치는 영향)

  • Yu, Jin;Suh, Su Jeoung;Jang, In Bae;Jang, In Bok;Moon, Ji Won;Kwon, Ki Beam;Lee, Sung Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.3
    • /
    • pp.240-247
    • /
    • 2018
  • Background: Saline soil has negative effects on the growth of most crops. Sodium is the main element that causes salt accumulation in soil. Organic materials such as cow and poultry manure, are frequently used during the preparation stage, which causes an increase in the rate of salt accumulation in the soil. Methods and Results: To investigate the influences of sodium on ginseng, $NaH_2PO_4$, $Na_2SO_4$, and NaCl were used to adjust the sodium concentrations at 0, 12.5, 25, 50, 75 and 100 mM in nutrient solution. In a 2-year-old ginseng, toxic symptoms appeared when the sodium treatment exceeded 50 mM. The sodium concentration in the leaves was 3.33%, which is more than twice as high as that of the control treated at 50 mM. As the sodium concentration increased, the root weight significantly decreased. In the 100 mM treatment, the weight decreased by 28% when compared to that of the control. The Amount of ginsenoside significantly increased with an increase in sodium concentrations. Conclusions: These results suggest that the growth of 2-year-old ginseng is negatively affected when sodium exceeds 50 mM. This result can be used for a as basis in diagnosing the physiological disorders of ginseng.

Efficacy of Three Different Plant Species for Arsenic Phytoextraction from Hydroponic System

  • Tiwari, Sarita;Sarangi, Bijaya Ketan;Pandey, Ram Avatar
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.145-149
    • /
    • 2014
  • Arsenic (As) is one of the heavy metals which causes acute bio-toxicity even at low concentration and has disastrous effect on environment. In some countries, As contamination has become alarming and increasing day by day as consequences of unsustainable management practices. Many existing physical, chemical and biological processes for As removal from water system are not feasible due to techno-economic limitations. The present study highlights the scope of biological strategy for As removal through phytoextraction. Arsenic uptake and accumulation in the biomass of three plant species and their As tolerance abilities have been investigated to develop an efficient phytoextraction system in combination of these plant species. Three non-crop plant species, Pteris vittata; Mimosa pudica, and Eichhornia crassipus were treated with 0-200 mg/L As in liquid nutrient solution for 14 days. P. vittata accumulated total 9,082.2 mg (8,223 mg in fronds) As/kg biomass and Eichhornia total 6,969 mg (4,517 mg in fronds)/kg biomass at 200 mg/L As concentration, respectively. Bioaccumulation factor (BF) and translocation factor (TF) were estimated to differentiate between excluders, accumulators and accumulation in above ground biomass. Pteris and Eichhornia have highest BF (67 and 17) and TF (64 and 3), respectively. In contrast, Mimosa accumulated up to 174 mg As/kg plant biomass which is low in comparison with other two plants, and both BF and TF were ${\leq}1$. This study reveals that Pteris and Eichhornia are As hyperaccumulator, and potential candidates for As removal from water system.

The Effects of Soil Improvements on Growth and Tissue Nutrient Concentrations of Fraxinus rhynchophylla and Pinus densiflora Seedlings in a Nursery (토양개량제 처리가 물푸레나무와 소나무 묘목의 생장과 양분농도에 미치는 영향)

  • Park, Byung Bae;Byun, Jae Kyung;Cho, Min Seok;Han, Si Ho;Jung, Mun Ho;Kim, Se Bin;Bae, Kikang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.2
    • /
    • pp.41-54
    • /
    • 2016
  • The production of high quality seedlings is a very important phase in silvicultural systems for successful reforestation or restoration. The purpose of this study was to measure both growth performances and nutrient responses of Fraxinus rhynchophylla and Pinus densiflora seedlings, which are commercially planted in Korea, according to soil improvement treatments. We applied 8 types of soil improvements: control with no treatment, compost B and compost Y as organic materials, vermiculite, perlite, two level of zeolite, and mix of vermiculite, perlite, and zeolite as inorganic materials in a permanent national nursery. Only compost B treatment significantly increased soil pH, organic matter, total nitrogen, available phosphorus, exchangeable potassium and calcium at the 0-10 cm soil depth. The growth of F. rhynchophylla and P. densiflora was the highest at the compost B treatment and the lowest at the vermiculate treatment. Compost B treatment allocated more carbon to aboveground than belowground by 39%, especially to foliage. On the vector diagnosis, there was 'shortage' on compost B treatment because of all increases of N contents, N concentrations, and growth and 'over accumulation' on vermiculite treatment because of more N uptake compared with dry weight increase. This study suggested optimal use of soil improvements is very important to improve soil quality in a permanently used nursery.