Changes of Organic Solutes and Antioxidative Enzyme Activity in Rice Seedling under Salt Stress

  • Park So-Hyeon (Department of Plant Resources and Science, Hankyong National University) ;
  • Sung Jwa-Kyung (National Institute of Agricultural and Science Technology, RDA) ;
  • Lee Su-Yeon (Department of Plant Resources and Science, Hankyong National University) ;
  • Lee Ju-Young (National Institute of Agricultural and Science Technology, RDA) ;
  • Jang Byoung-Choon (National Institute of Agricultural and Science Technology, RDA) ;
  • Song Beom-Heom (Department of Agronomy, Chungbuk National University) ;
  • Kim Tae-Wan (Department of Plant Resources and Science, Hankyong National University)
  • Published : 2005.12.01

Abstract

Seedlings of two rice genotyopes, cvs. Ilpumbyeo and Gancheokbyeo, were exposed to 0, 50 and 100 mM NaCl in nutrient solution for nine days. Plants were collected at the interval of 3 days and organic and inorganic solutes in leaves and roots and antioxidative enzyme activity in leaves were determined. Under salinity, the accumulation of soluble sugars occurred considerably in the older leaves of stressed seedlings compared to younger leaves and roots. The endogenous Na+ contents markedly increased at higher NaCl concentration in leaves and roots of seedlings, though it was higher accumulated in roots. Salinity resulted in an excessive proline accumulation in the stressed plants. A more pronounced increase was observed in Gancheokbyeo leaves. SOD activity in Impumbyeo cannot found any remarkable change, whereas, in Gancheokbyeo, its activity was rapidly decreased. CAT and POD activities increased with an increase in NaCl concentration in both genotypes. In sum­mary, the high capacity of rice seedlings to overcome an unfavorable growth condition such salt stress appears to be related to an adequate partition of organic solutes between shoots and roots and to changes in absorption, transport and re-translocation of salts.

Keywords

References

  1. Acar, O., I. Turkan, and F. Ozdemir, 2001. Superoxide dismutase and peroxidase activites in drought sensitive and resistant barley (Hordeum vulgare L.) Cultivars. Acta Physiol. Plant. 23(3) : 351-356 https://doi.org/10.1007/s11738-001-0043-8
  2. Aebi, H. 1974. Catalases. In: H.U. Bergmeyer (Ed.), Methods of enzymatic analysis, vol. 2, Academic Press, NY. 673-684
  3. Alamgir, A. N. M. and M. Y. Ali. 1999. Effect of salinity on leaf pigments, sugar and protein concentrations and chloroplast ATPase activity of rice (Oryza sativa L.). Bangladesh J. Botany. 28: 145-149
  4. Bates, L. S., R. P. Waldren, and I. D. Tearc. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39 : 205-207 https://doi.org/10.1007/BF00018060
  5. Beyer, W. F. and I. Fridovich. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161 : 559-566 https://doi.org/10.1016/0003-2697(87)90489-1
  6. Bohnert, H., D. Nelson, and R. Jenson. 1995. Adaptations to envirionmental stress. Plant Cell 7 : 1099-1111 https://doi.org/10.1105/tpc.7.7.1099
  7. Bowler, C., M. V. Montagu, and D. Inze, 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83-116 https://doi.org/10.1146/annurev.pp.43.060192.000503
  8. Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 : 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  9. Cakmak, I., D. Strbac, and H. Marschner. 1993. Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J. Exp. Bot. 44(258) : 127-132 https://doi.org/10.1093/jxb/44.1.127
  10. Cramer, G. R. and R. S. Nowak. 1992. Supplemental managanese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Physiol. Plant. 84 : 600-605 https://doi.org/10.1111/j.1399-3054.1992.tb04710.x
  11. Crowe, J. H. and M. V. Crowe. 1992. Membrane integrity in anhydrobiotic organisms: Toward a mechanism for stabilizing dry cell, In GN Somero, CB Osmond, CL Bolis, eds., Water and Life, Springer-Verlag, Berlin, pp. 87-103
  12. Dionisio-Sese, M. L. and S. Tobita. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135 : 1-9 https://doi.org/10.1016/S0168-9452(98)00025-9
  13. Dubey, R. S. and A. K. Singh. 1991. Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolizing enzymes in rice plants. Biol. Plant. 42 : 233-239 https://doi.org/10.1023/A:1002160618700
  14. Gadallah, M. A. A. 1999. Effect of proline and glycinebetaine on Viciafaba responses to salt stress. Biol. Plant 42 : 247-249 https://doi.org/10.1007/BF03030486
  15. Gilbert, G. A., M. V. Gadush, C. Wilson, and M. A. Madore. 1998. Amino acid accumulation in sink and source tissues of Coleus blumei Benth. during salinity stress. J. Exp. Bot. 49 : 107-114 https://doi.org/10.1093/jexbot/49.318.107
  16. Greenway, H. and R. Munns. 1980. Mechanism of salt tolerance in non-halophytes. Ann. Rev. Plant Physiol. 31 : 149-190 https://doi.org/10.1146/annurev.pp.31.060180.001053
  17. Hasegawa, P., R. A. Bressan, J.-K. Zhu, and H. J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Mol. Biol. 51 : 463-499 https://doi.org/10.1146/annurev.arplant.51.1.463
  18. Hernandez, S., C. Delen, and F. Larher. 2000. Proline accumulation by leaf tissues of tomato plants in response to salinity. Comptes Rendus de L Academie Des Sciences Serie-Sciences de La Vie-Life Sciences. 323: 551-557 https://doi.org/10.1016/S0764-4469(00)00167-0
  19. Kashem, M. A., N. Sultana, T. Ikeda, H. Hori, T. Loboda, and T. Mitsui. 2000b. Alteration of starch-sucrose transition in germinating wheat seed under sodium choride salinity. J. Plant Biol. 43: 121-127 https://doi.org/10.1007/BF03030488
  20. Kerepesi, I. and G. Galiba, 2000. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci. 40: 482-487 https://doi.org/10.2135/cropsci2000.402482x
  21. Khan, M. S. A., A. Hamid, A. B. M. Salahuddin, A. Quasem, and M. A. Karim. 1997. Effect of sodium chloride on growth, photosynthesis and mineral ions accumulation of different types of rice (Oryza sativa L.). J. Agron. Crop Sci. 179 : 149-161 https://doi.org/10.1111/j.1439-037X.1997.tb00511.x
  22. Lacerda, C. F., J. Cambraia, M. A. O. Cano, and H. A. Ruiz. 2001. Plant growth and solute accumulation and distribution in two sorghum genotypes, under NaCI stress. Rev. Bras. Fisiol. Veg. 13 : 270-284 https://doi.org/10.1590/S0103-31312001000300003
  23. Lewitt, J. 1980. Salt and ion stresses, in: J. Levitt (Ed.), Responses to environmental stresses, Academic Press, New York. pp. 365-488
  24. Lutts, S., J. Bouharmont, and J. M. Kinet, 1999. Physiological characterisation of salt-resistant rice (Oryza sativa L.) somaclones, Aust. J. Bot. 47 : 835-849 https://doi.org/10.1071/BT97074
  25. Lutts, S., V. Majerus, and J. M. Kinet. 1999. NaCI effects on proline metabolism in rice (Oryza sativa L.) seedlings. Physiol. Plant 105 : 450-458 https://doi.org/10.1034/j.1399-3054.1999.105309.x
  26. Madan, S., H. S. Nainawatte, R. K. Jain, and J. B. Choudhury. 1995. Proline and proline metabolizing enzymes in vitro selected NaCI tolerant Brassica juncea under salt stress. Ann. Bot. 76: 51-57 https://doi.org/10.1006/anbo.1995.1077
  27. Mansour, M. M. F. 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant. 43(4) : 491-500 https://doi.org/10.1023/A:1002873531707
  28. Munns, R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypothesis. Plant Cell Environ. 16 : 15-24
  29. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25 : 239-250 https://doi.org/10.1046/j.0016-8025.2001.00808.x
  30. Munns, R. and A. Termaat. 1986. Whole-plant responses to salinity. Aust. J. Plant Physiol. 13 : 143-160 https://doi.org/10.1071/PP9860143
  31. Okusanya, O. T. and I. A. Ungar. 1984. The growth and mineral composition of three species of Spergularia as affected by salinity and nutrients at high salinity. Am. J. Bot. 71 : 47-57 https://doi.org/10.2307/2443501
  32. Perez-Alfocea, F., F. Estan, M. Caro, and M. C. Balarin. 1993. Response of tomato cultivars to salinity. Plant Soil 150 : 203-211 https://doi.org/10.1007/BF00013017
  33. Putter. J. 1974. Peroxidases, in: H.U. Bergmeyer (Ed.), Methods of enzymatic analysis. vol. 2, Academic Press, NY. 685-690
  34. Ramanjulu, S. and C. Sudhakar. 2001. Alleviation of NaCI salinity stress by calcium is partly related to the increased proline accumulation in mulberry (Morus alba L.) callus. J. Plant Biol. 28 : 203-206
  35. Roe, J. H. 1955. The determination of-sugar in blood and spinal fluid with anthrone reagent. J. Biol. Chem. 212: 335-343
  36. Scandalios, J. G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101 : 7-12 https://doi.org/10.1104/pp.101.1.7
  37. Shalata, A., V. Mittova, M. Volokita, M. Guy, and M. Tal. 2001. Response ofthe cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol. Plant. 112: 487-494 https://doi.org/10.1034/j.1399-3054.2001.1120405.x
  38. Singha, S. and M. A. Choudhuri, 1990. Effect of salinity (NaCI) stress on $H_2O_2$ metabolism in Vigna and Oryza seedlings Biochem, Physiol. Pflanzen. 186: 69-74 https://doi.org/10.1016/S0015-3796(11)80295-7
  39. Sultana, N., T. Ikeda, and R. Itoh. 1999. Effect of NaCI salinity on photosynthesis and dry mater accumulation in developing rice grains. Environ. Exp. Bot. 42 : 211-220 https://doi.org/10.1016/S0098-8472(99)00035-0
  40. Timasheff, S. N. and T. Arakawa. 1989. Stabilization of protein structure by solvents. In; Greighton, T. E. ed. Protein structure. A practical approach. Oxford. IRL Press. pp. 331-344
  41. Vaidyanathan, H., P. Sivakumar, R. Chakrabarty, and G. Thaomas. 2003. Scavenging of reactive oxygen species in NaCI-stressed rice (Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties. Plant Sci. 165 : 1411-1418 https://doi.org/10.1016/j.plantsci.2003.08.005
  42. Zidan, M., H. Azaizeh, and P. M. Neumann. 1990. Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physiol. 93 : 7-11 https://doi.org/10.1104/pp.93.1.7