References
- Park, S. J., T. W. Kim, M. K. Kim, S. Y. Lee, and S. C. Lim (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol. Adv. 30: 1196-1206. https://doi.org/10.1016/j.biotechadv.2011.11.007
- Park, S. J., Y. A. Jang, H. Lee, A. R. Park, J. E. Yang, J. Shin, Y. H. Oh, B. K. Song, J. Jegal, S. H. Lee, and S. Y. Lee (2013) Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metab. Eng. 20: 20-28. https://doi.org/10.1016/j.ymben.2013.08.002
- Sohn, S. B., T. Y. Kim, J. M. Park, and S. Y. Lee (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol. J. 5: 739-750. https://doi.org/10.1002/biot.201000124
- Lee, S. Y., H. H. Wong, J. I. Choi, S. H. Lee, S. C. Lee, and C. S. Han (2000) Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol. Bioeng. 68: 466-470. https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<466::AID-BIT12>3.0.CO;2-T
- Hu, S., X. Luo, C. Wan, and Y. Li (2012) Characterization of crude glycerol from biodiesel plants. J. Agric. Food Chem. 60: 5915-5921. https://doi.org/10.1021/jf3008629
- Johnson, D. T. and K. A. Taconi (2007) The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog. 26: 338-348. https://doi.org/10.1002/ep.10225
- Corma, A., G. W. Huber, L. Sauvanaud, and P. O'Connor (2008) Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J. Catal. 257: 163-171. https://doi.org/10.1016/j.jcat.2008.04.016
- Mu, Y., H. Teng, D. J. Zhang, W. Wang, and Z. L. Xiu (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28: 1755-1759. https://doi.org/10.1007/s10529-006-9154-z
- Malaviya, A., Y. S. Jang, and S. Y. Lee (2012) Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl. Microbiol. Biotechnol. 93: 1485-1494. https://doi.org/10.1007/s00253-011-3629-0
- Sabourin-Provost, G. and P. C. Hallenbeck (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour. Technol. 100: 3513-3517. https://doi.org/10.1016/j.biortech.2009.03.027
- Mothes, G., C. Schnorpfeil, and J. U. Ackermann (2007) Production of PHB from crude glycerol. Eng. Life Sci. 7: 475-479. https://doi.org/10.1002/elsc.200620210
- Kondamudi, N., S. K. Mohapatra, and M. Misra (2008) Spent coffee grounds as a versatile source of green energy. J. Agri. Food Chem. 56: 11757-11760. https://doi.org/10.1021/jf802487s
- Arya, M. and L. J. Rao (2007) An impression of coffee carbohydrates. Crit. Rev. Food Sci. Nutr. 47: 51-67. https://doi.org/10.1080/10408390600550315
- Reddy, S. V., M. Thirumala, T. V. K. Reddy, and S. K. Mahmood (2008) Isolation of bacteria producing polyhydroxyalkanoates (PHA) from municipal sewage sludge. World. J. Microbiol. Biotechnol. 24: 2949-2955. https://doi.org/10.1007/s11274-008-9839-7
- Duke, J. A., & Atchley, A. A. (1984) Proximate analysis, IN: Christie, BR (ed), The handbook of plant science in agriculture. Boca Raton, FL: CRC Press, Inc.
- Bertrand, B., P. Vaast, E. Alpizar, H. Etienne, F. Davrieux, and P. Charmetant (2006) Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiology 26: 1239-1248. https://doi.org/10.1093/treephys/26.9.1239
- Greenspan, P., E. P. Mayer, and S. D. Fowler (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100: 965-973. https://doi.org/10.1083/jcb.100.3.965
- Jung, Y. K., T. Y. Kim, S. J. Park, and S. Y. Lee (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105: 161-171. https://doi.org/10.1002/bit.22548
- Braunegg, G., B. Sonnleitner, and R. M. Lafferty (1978) A rapid gas chromatographic method for the determination of poly-b-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29-37. https://doi.org/10.1007/BF00500854
- Jacquel, N., C. W. Lo, Y. H. Wei, H. S. Wu, and S. S. Wang (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem. Eng. J. 39: 15-27. https://doi.org/10.1016/j.bej.2007.11.029
- Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
- Zhang, H. F., L. Ma, Z. H. Wang, and G. Q. Chen (2009) Biosynthesis and characterization of 3-hydroxyalkanoate terpolyesters with adjustable properties by Aeromonas hydrophila. Biotechnol. Bioeng. 104: 582-589. https://doi.org/10.1002/bit.22409