• Title/Summary/Keyword: Numerical wave generation

Search Result 224, Processing Time 0.02 seconds

A Parametric Study of the Wave-Generation Performance of a Piston-Type Wave Maker (피스톤 타입 조파기의 형상 매개변수에 대한 조파성능 연구)

  • Kwon, Do-Soo;Kim, Sung-Jae;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.504-509
    • /
    • 2019
  • The wave-generation performance of a piston-type wave maker was analyzed using the numerical wave tank technique, and the numerical results were compared with theoretical solutions. A two-dimensional frequency domain analysis was conducted based on the Rankine panel method. Various parameters were used to examine the wave-generation performance, such as the width and gap of the wave board. The effects of the thickness of the wave board and of the gap from the bottom of the tank were evaluated. The difference in the amplitude of the generated wave between the analytical solution and the numerical result was examined, and its causes were addressed due to the gap flow between the bottom of the tank and the wave board. This parametric analysis can be utilized to design an optimum wave make parametric analysis to design an optimum wave maker that can generate waves with amplitudes that can be predicted accurately.

On Propagation of Ship Induced Waves in 3-D Numerical Wave Basin with Non-Reflected Wave Generation System (3차원 수치파동수조에서 무반사 조파시스템을 이용한 항주파의 전파재현)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.23-28
    • /
    • 2011
  • In this paper, a new generation method for ship induced waves is proposed using the fully non-linear 3-D numerical model with non-reflected wave generation system (LES-WASS-3D). A ship induced wave generated by the newly proposed method is examined in comparison with that obtained by an empirical formula. It is then shown that there is a good agreement in free surface the elevation between them. As a result, it is revealed that a ship induced wave in a 3-D numerical wave field can be simulated well using LES-WASS-3D.

Numerical Investigation on the Applicability of Wave-Induced Swirl Water Chamber for Wave Power Generation in Coastal Water of Korea (파력발전을 위한 파유기 회전수류 유수실의 국내 연안 적용 가능성에 대한 수치해석적 조사)

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.32-42
    • /
    • 2013
  • In this paper, a wave-induced swirl water chamber (SWC) for breakwater and wave power generation is introduced and its applicability to wave power generation in the coastal waters of Korea is investigated. The SWC type of wave power generation is a way to drive a turbine using the unidirectional swirl flow that is induced in the back of a curtain wall of a breakwater due to incident waves. The typical wave characteristics are obtained by analyzing the annual statistical wave data from KHOA (Korea Hydrographic and Oceanographic Administration). A numerical analysis is carried out on the variations in the SWC entrance height, wave height, and different installation conditions. For the numerical analysis, a commercial code, Fluent based on FVM, is used. As the entrance height decreases, the mass flow rate through the entrance is rarely changed, whereas the magnitude of the flow velocity of the smaller entrance height is greater than the other ones, which is better for the formation of an SWC swirl flow inside and the flow kinetic energy at the entrance. In cases of installation conditions where a wall is place behind and under SWC, it has been shown that the mass flow rate through the entrance is greater than that in the open condition, and sufficient flow kinetic energy is generated in the entrance for wave power generation. However, the swirl flow kinetic energy is relatively small. Thus, in the future, it is necessary to study the swirl flow generation, which is affected by the SWC shape.

CFD study of an iterative focused wave generation method

  • Haoyuan Gu;Hamn-Ching Chen
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • An iterative focused wave generation method is developed and implemented in a local analytic based Navier-Stokes solver. This wave generation method is designed to reproduce the target focused wave by matching the target amplitude spectrum and phase angle. A 4-waves decomposition scheme is utilized to obtain the linearised component of the output wave. A model test studying the interaction between different focused waves and a fixed cylinder is selected as the target for the wave generation approach. The numerical wave elevations and dynamic pressure on the cylinder are compared with the experimental measurement and other state-of-the-art numerical methods' results. The overall results prove that the iterative adjustment method is able to optimize the focused wave generated by a CFD approach.

Numerical Study of Sound Generation Mechanism by a Blast Wave (폭발파에 의한 음향파 생성 메커니즘의 수치적 연구)

  • Bin, Jong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1053-1061
    • /
    • 2009
  • The goal of this paper is to investigate the generation characteristics of the main impulsive noise sources generated by the supersonic flow discharging from a muzzle. For this, this paper investigates two fundamental mechanisms to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. The numerical approach is validated by comparison with results obtained by linear theory for a small disturbance case. Shock deformations are modeled numerically by examining the interaction of a vortex ring with a blast wave. A numerical approach of a dispersion-relation-preserving(DRP) scheme is used to investigate the sound generation and propagation by their interactions in near-field.

Study on Wave Generation Technique and Estimation of Directional Wave Spectra for Multi-Directional Irregular Waves (다방향 불규칙파에 대한 조파 기법 및 방향 스펙트럼 추정 연구)

  • Seunghoon Oh;Sungjun Jung;Sung-Chul Hwang;Eun-Soo Kim;Hong-Gun Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.266-277
    • /
    • 2023
  • In this study, fundamental research is conducted for the generation technique and analysis of multi-directional irregular waves in the Deep Ocean Engineering Basin (DOEB). A three-dimensional boundary element method-based numerical tank is implemented to perform wave generation simulations, and directional spectrum estimation is carried out using the results of simulations. The wave generation technique of the Snake type wave maker, generating multi-directional irregular waves, is implemented using the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) algorithms. The wave generation technique is validated by comparing the wave spectrum from simulations and experiments. A Maximum Likelihood Method (MLM) based estimation code is developed for estimating the directional wave spectra. The multi-directional irregular waves are tested in the DOEB and the numerical tank, and directional wave spectra obtained from two methodologies are estimated and compared. A correction procedure for the directional distribution of multi-directional waves is established, and the possibility of correcting the directional spreading function using the numerical tank is validated.

Numerical simulation of wave and current interaction with a fixed offshore substructure

  • Kim, Sung-Yong;Kim, Kyung-Mi;Park, Jong-Chun;Jeon, Gyu-Mok;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.188-197
    • /
    • 2016
  • Offshore substructures have been developed to support structures against complex offshore environments. The load at offshore substructures is dominated by waves, and deformation of waves caused by interactions with the current is an important phenomena. Wave load simulation of fixed offshore substructures in waves with the presence of uniform current was carried out by numerical wave tank technique using the commercial software, FLUENT. The continuity and Navier-Stokes equations were applied as the governing equations for incompressible fluid motion, and numerical wavemaker was employed to reproduce offshore wave environment. Convergence test against grids number was carried out to investigate grid dependency and optimized conditions for numerical wave generation were derived including investigation of the damping effect against length of the damping domain. Numerical simulation of wave and current interactions with fixed offshore substructure was carried out by computational fluid dynamics, and comparison with other experiments and simulations results was conducted.

Techniques of Internally Generating Waves on A Curve and Specifying Partial Reflection Conditions (파랑 수치모형에서 곡선형 내부조파기법과 부분반사조건 적용기법 개발)

  • Lee, Chang-Hoon;Kim, Min-Kyun;Kim, Duk-Gu;Choi, Hyuk-Jin;Cho, Yong-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.532-537
    • /
    • 2005
  • The techniques of internally generating waves on a curve in a rectangular grid system are developed using the line source method. Numerical experiments are conducted using the extended mild-slope equations of Suh et al. (1997). For five different types of wave generation layout, numerical experiments are conducted in the cases of the propagation of waves on a flat bottom, and the refraction and shoaling of waves on a plane slope. The fifth type of wave generation, which consists of two parallel lines connected to a semicircle, shows the best solutions especially when the grid size is small enough.

  • PDF

On Generation Methods of Oblique Incidence Waves in Three-Dimensional Numerical Wave Tank with Non-Reflected System (3차원 무반사 수치파동수조에서 경사입사파의 조파기법 개발)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.401-406
    • /
    • 2011
  • In this study, generation methods of oblique incident wave are newly proposed and examined using the fully non-linear numerical model with non-reflected wave generation system(LES-WASS-3D). In order to verify, free surface elevation and horizontal velocities are compared with $3^{rd}$ -order Stokes wave theory in 3-D oblique incident wave field. As a results, it is revealed that the numerical results by newly proposed technique are in good agreement with the theory.

A Study on the Generation for the Design Waves with a Numerical Wave Tank (수치파 수조를 이용한 설계파 생성에 관한 연구)

  • Jeong, Seong-Jae;An, Heui-Chun;Shin, Jong-Keun;Choi, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.205-211
    • /
    • 2005
  • In this study, a new numerical procedure for the generation of a nonlinear tailored group of waves is presented. The procedure is based on the transient wave group technique. In order to integrate the nonlinearity during the wave propagation in the computational method, the Navier-Stokes equations are applied as governing equations. The governing equations are discretized by finite volume approximation. The deformation of the free water surface in each time step is pursued with a moving grid. A two-dimensional, numerical wave tank for the simulation of the wave propagation is developed and tested in detail. The numeric results are compared first with analytical wave theories and with measurements, in order to examine the correctness of the numerical wave tank. Wave surface elevation and associated fields of velocity and pressure are numerically computed and compared with measurements. Very good agreements show up.