• Title/Summary/Keyword: Numerical visualization

Search Result 428, Processing Time 0.022 seconds

Buoyancy-Affected Separated Laminar Flow over a Vertically Located, Two-Dimensional Backward-Facing Step (수직으로 놓인 후향계단위를 흐르는 유체유동에 미치는 부력의 영향에 관한 연구)

  • 백병준;박복춘;김진택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1253-1261
    • /
    • 1993
  • Numerical analysis and measurements of the velocity and temperature distributions in buoyancy assisting laminar mixed convection flow over a vertically located, two-dimensional backward-facing step are reported. Laser-Doppler Velocimeter and Constant Temperature Anemometer operated in constant current were used to measure simultaneously the velocity and temperature distributions in the recirculation region downstream of the step. The reattachment length was measured by using flow visualization technique for different inlet velocities, wall temperatures and step heights. While the reattachment length $X_r$ increases as the inlet velocity or step height increase, it decreases as the buoyancy force increases, causing the size of the recirculation region to decrease. For the experimental range of $Gr_s$/$Re_{s}^{2}$$\times$$10^3$<17, a correlation equation for the reattachment length can be given by $X_{r}=1.05(2.13+0.021 Re_{s})exp$ $(-33.7_s^{-0.186}/Gr_{s}/Re_{s}^2).$ The Nusselt number is found to increase and the location of its maximum value moves closer to the step as the buoyancy force increases. The location of the maximum Nusselt number occurs downstream of the reattachment point, and distance between the reattachment point and the location of the maximum Nusselt mumber increases as the buoyancy force increases. Computational prediction agrees favorably well with measured results.

Oscillation Characteristics of Turbulent Channel Flow with Wall Blowing (채널유동에서 질량분사에 의한 표면유동의 진동 특성)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.62-68
    • /
    • 2009
  • The interaction between wall blowing and oxidizer flow can generate a very complicated flow characteristics in combustion chamber of hybrid rockets. LES analysis was conducted with an in-house CFD code to investigate the features of turbulent flow without chemical reactions. The numerical results reveal that the flow oscillations at a certain frequency exists on the fuel surface, which is analogous to those observed in the solid propellant combustion. However, the observation of oscillating flow at a certain frequency is only limited to a very thin layer adjacent to wall surface and the strength of the oscillation is not strong enough to induce the drastic change in temperature gradient on the surface. The visualization of fluctuating pressure components shows the periodic appearance of relatively high and low pressure regions along the axial direction. This subsequently results in the oscillation of flow at a certain fixed frequency. This implies that the resonance phenomenon would be possible if the external disturbances such as acoustic excitation could be imposed to the oscillating flow in the combustion chamber.

Landscape Information Visualization of Landscape Potential Index in Hilly Openspace Conservation of Urban Fringe Area (도시주변 녹지경관의 보전.관리에 있어 경관잠재력 지표의 경관정보화와 가시화 연구)

  • Cho, Tong-Buhm
    • Journal of Korean Society of Rural Planning
    • /
    • v.7 no.1 s.13
    • /
    • pp.37-48
    • /
    • 2001
  • The purpose of this study is to suggest the landscape potential index for visualizing landscape information in the conservation of hilly landscape in urban fringe. For the visual and quantitative approach to topological landscape assessment, numerical entity data of DEM(digital elevation model) were processed with CAD-based utilities that we developed and were mainly focused on analysis of visibility and visual sensitivity. Some results, with reference in assessing greenbelt area of Eodeung Mt. in Gwangju, proved to be considerable in the landscape assessment of suburban hilly landscapes. 1) Since the viewpoints and viewpoint fields were critical to landscape structure, randomized 194 points(spatially 500m interval) were applied to assessing the generalized visual sensitivity, we called. Because there were similar patterns of distribution comparing to those by 56 points and 18 Points given appropriately, it could be more efficient by a few viewpoints which located widely. 2) Regressional function was derived to represent the relationships between probabilities of visibility frequency and the topological factors(topological dominance, landform complexity and relational aspect) of target field. 3) Visibility scores of each viewpoint were be calculated by summing the visual sensitivity indices within a scene. The scores to the upper part including ridge line have been more representative to overall distributions of visual sensitivities. Also, with sum of deviations of sensitivity indices from each single point's specific index to the weighting values of view points could be estimated rotationally. 4) The deviational distributions of visual sensitivity classes in the topological unit of target field were proved to represent the visual vulnerability of the landform. 5) Landscape potential indices combined with the visual sensitivity and the DGN(degree of green naturality) were proposed as visualized landscape information distributed by topological unit.

  • PDF

A Numerical Performance Study on Rudder with Wavy Configuration at High Angles of Attack (Wavy 형상 적용에 따른 대 각도에서의 러더 성능에 대한 수치해석 연구)

  • Tae, Hyun June;Shin, Young Jin;Kim, Beom Jun;Kim, Moon-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • This study deals with numerically comparing performance according to rudder shape called 'Twisted rudder and Wavy twisted rudder'. In comparison with conventional rudder, rudder with wavy shape has showed a better performance at high angles of attack($30^{\circ}{\sim}40^{\circ}$) due to delaying stall. But most of study concerned with wavy shape had been performed in uniform flow condition. In order to identify the characteristics behind a rotating propeller, the present study numerically carries out an analysis of resistance and self-propulsion for KCS with twisted rudder and wavy twisted rudder. The turbulence closure model, Realizable $k-{\epsilon}$, is employed to simulate three-dimensional unsteady incompressible viscous turbulent and separation flow around the rudder. The simulation of self-propulsion analysis is performed in two step, because of finding optimization case of wavy shape. The first step presents there are little difference between twisted rudder and case of H_0.65 wavy twisted rudder in delivered power. So two kind of rudders are employed from first step to compare lift-to-drag ratio and torque at high angles of attack. Consequently, the wavy twisted rudder is presented as a possible way of delaying stall, allowing a rudder to have a better performance containing superior lift-to-drag ratio and torque than twisted rudder at high angles of attack. Also, as we indicate the flow visualization, check the quantity of separation flow around the rudder.

Physical Modeling for Enhancement of the Functionality of Construction Graphical Simulation System (건설 그래픽 시뮬레이션 시스템의 기능 개선을 위한 물리적 모델링)

  • Kim, Yeong-Hwan;Jung, Pyung-Ki;Seo, Jong-Won
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.1 s.29
    • /
    • pp.80-88
    • /
    • 2006
  • Construction graphical simulations usually do not reflect physical properties of construction equipment and material because there are restricted to the geometric model. The complete description of construction operations is difficult for graphical simulation without a physical modeling. The object of this research is to enhance the functionality of restricted simulation system to geometric model. And research is conducted to overcome the limitation of current construction graphical simulation system through the connection geometric model and physical model with the physical properties of construction equipment and material such as crane's cable oscillation. The motion equations for the oscillation of crane cable as a result of the trolley's movement and the boom's rotation were derived. The equations were solved through numerical analysis and the results were simulated visually. The realistic description with physical modeling of construction operations will contribute for ensuring preliminary against risks and improving constructability as well as the application of various fields.

Flow of a low concentration polyacrylamide fluid solution in a channel with a flat plate obstruction at the entry

  • Kabir, M.A.;Khan, M.M.K.;Rasul, M.G.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.63-73
    • /
    • 2004
  • Flow in a channel with an obstruction at the entry can be reverse, stagnant or forward depending on the position of the obstruction. These flow phenomena have potential applications in the control of energy and various flows in process engineering. Parameters that affect this flow inside and around the test channel are the gap (g) between the obstruction geometry and the test channel, the Reynolds number (Re) and the length (L) of the test channel. The influence of these parameters on the flow behavior was investigated using a flat plate obstruction at the entry of the channel. A low concentration polyacrylamide solution (0.018% by weight) showing a powerlaw fluid behavior was used as the fluid in this investigation. The flow phenomena were investigated by the velocity measurement and the flow visualization and their results were compared with numerical simulation. These results of low concentration polyacrylamide solution are also compared with the results of water published elsewhere (Kabir et al., 2003). The maximum reverse flow inside the test channel observed was 20% - 30% of the outside test channel velocity at a g/w (gap to width) ratio of 1 for Reynolds numbers of 1000 to 3500. The influence of the test channel length (L) and the Reynolds number (Re) on the velocity ratio ($V_i$/$V_o$: inside velocity/outside velocity in the test channel) are also presented and discussed here.

Numerical Study on the Side-Wind Aerodynamic Forces of Chambered 3-D Thin-Plate Rigid-Body Model (캠버가 있는 3차원 박판 강체 모형의 측풍 공기력에 대한 수치 연구)

  • Shin, Jong-Hyeon;Chang, Se-Myong;Moon, Byung-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.97-108
    • /
    • 2015
  • In the design of sailing yachts, para-glider, or high-sky wind power, etc., the analysis of side-wind aerodynamic forces exerted on a cambered 3-D model is very important to predict the performance of various machinery systems. To understand the essential flow physics around the three-dimensional shape, simplified rigid-body models are proposed in this study. Four parameters such as free stream velocity, angle of attack, aspect ratio, and camber are considered as the independent variables. Lift and drag coefficients are computed with CFD technique using ANSYS-CFX, and the results with the visualization of post-processed flow fields are analyzed in the viewpoint of fluid dynamics.

Numerical Simulation of Directivity for Probe and Surface Defect (탐촉자와 표면 결함에 대한 지향성의 수치 실험에 관한 연구)

  • Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.1
    • /
    • pp.291-298
    • /
    • 1995
  • An ultrasonic testing uses the directivity of the ultrasonic wave which propagates in one direction. The directivity is expressed as the relationship between the propagate direction and its sound pressure. This paper studied the directivity of shear waves emitted from angle probes and scattered from surface defects by using visualization method. These experimental results were compared with the theory which was based on the continuous wave. The applicability of continuous wave theory was discussed in terms of the parameter $d/{\lambda}$; where d is transducer or defect size and ${\lambda}$ is the wavelength. In the case of angle probes, the experimental results show good agreement with theoretical directivity on the principal lobe. When defect size was smaller than the wavelengths, clear directivity in the reflected wave was observed. In the case of the same ratio of defect size to wavelength, the directivity of reflected waves from the defect show almost the same directivity in spite of frequency differences. When the $d/{\lambda}$ is greater than 1.5, measured directivities almost agreed with the theoretical one.

  • PDF

Epidural Adhesiolysis in Low Back Pain (요통환자에서 경막외 유착 용해술에 의한 제통효과)

  • Lee, Sang-Chul;Oh, Wan-Soo;Kim, Jin-Kyoung;Roh, Chang-Joon;Son, Jong-Chan
    • The Korean Journal of Pain
    • /
    • v.10 no.2
    • /
    • pp.214-219
    • /
    • 1997
  • Background: Epidural neural blockade with local anesthetics combined with steroids has been in clinical trials for patients with low back pain. But pain treatment of low back pain remains somewhat problematic. Many patients with low back pain have epidural fibrosis and adhesions proved with magnetic resonance imaging(MRI) examination. These findings might play an important role in the origin of back pain. Present study was aims to investigate the effect of epidural adhesiolysis in patients with low back pain. Methods: We investigated 76 patients suspected with epidural fibrosis and adhesion was suspected. Nerve pathology was demonstrated and epidural fibrosis suspected or proved with MRI examination. 17G needle specially designed by Racz was inserted at sacral hiatus and catheter was inserted untill its tip was located at lesion site under fluoroscopic guidance. Injection of contrast dye was achieved and prospected spread of agents. Injection of 0.25% bupivacaine, triamcinolone, and 10% hypertonic saline via catheter were carried out daily for 3 days. Evaluation included assessment of pain relief (Numerical Rating Scale; NRS) post-epidural adhesiolysis 3 days, 1 week, and 3 months. We also looked for complication of epidural adhesiolysis. Results: Statistical analysis(Friedman nonparametric repeated measures test and Dune's multiple comparison test) demonstrated NRS was significantly less during 3 months after epidural adhesiolysis(P<0.05). Especially, there is a extremely significance in post-epidural adhesiolysis 3 days (P<0.001). Only four patients reported any complications the most common symptom among three persistent headache but disappeared after a few months without residual sequelae. Conclusion: We conclude epidural adhesiolysis is a safe and effective method of pain therapy for low back pain with proven lumbo-sacral fibrosis and adhesion. A direct visualization by epiduroscopy may be more useful to the resulting functional changes after epidural adhesiolysis.

  • PDF

A study on the flow and aeroacoustic characteristics of the sirocco fan of OTR (Over The Range) (후드겸용 전자레인지 시로코홴의 유동 및 소음특성에 관한 연구)

  • Jeon, Wan-Ho;Rew, Ho Seon;Song, Sung-Bae;Shon, Sang-Bun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.17-23
    • /
    • 2004
  • Aeroacoustic characteristics of sirocco fan used in Over-The-Range (OTR) has been analyzed in this paper. A microwave hood combination over the gas range is short for the OTR. The flow phenomena of the double-sided sirocco fan was analyzed numerically and experimentally by using commercial code and three dimensional PIV for flow visualization. Also, microphone array is used in order to understand acoustic characteristics of OTR. Two dimensional unsteady flow and acoustic simulation is tried to qualitatively estimate the effects of tonal noise and broadband noise on the overall sound pressure level. It is found that tonal sound is generated from the strong interaction between the impeller and cutoff while broadband sound is generated from the strong secondary flows along the scroll surface. To reduce the noise level, the V-shape cut-off was applied to improve the sound quality by reducing tonal noise. So the peak noise at BPF (Blade Passing Frequency) was almost reduced. The shape of flow-guide to suppress the secondary flow over the scroll surface was carefully checked. It is found that this affects flow pattern at the fan exit and reduces the broad band noise. Through this numerical and experimental study, the sound pressure level was lowered by 4dBA compared to that of the previous fan at the operating point.